Greedy regular expression matching

Alain Frisch *

Ecole Normale Supérieure

Abstract

This paper studies the problem of matching sequences
against regular expressions in order to produce structured
values. More specifically, we formalize in an abstract
way a greedy disambiguation policy and propose efficient
matching algorithms. We also formalize and address a
folklore problem of non-termination in naive implemen-
tations of the greedy semantics.

Regular expression types and patterns have been in-
troduced in the setting of XML-oriented functional lan-
guages. Traditionnaly, all the XML values and sequences
Our

work suggests an alternative implementation technique,

share a common uniform runtime representation.

where regular expression types define not only a set of
abstract flat sequences, but also a custom structured rep-
resentation for such values. This paves the way to a vari-
ety of language designs and implementations to integrate
XML structural types in existing languages (class-based
0O languages, imperative features, constrained runtime
environment, ...).

1 Introduction

1.1 Motivation

Regular expressions play a key role in XML. They are
used in XML schema languages (DTD, XML-Schema,
Relax-NG, ...) to constrain the possible sequences
of children of an element. They naturally lead
to the introduction of regular erpression types and
reqular expression patterns in XML-oriented func-
tional languages (XDuck [HVP00, HP03, Hos01],
XQuery [BCF*03b], CDuce [BCF03a]). These works

*This work was supported by an internship at Microsoft
Research.

Luca Cardelli

Microsoft Research

introduce new kinds of questions and give results in
the theory of regular expression and regular (tree)
languages, such as efficient implementation of in-
clusion checking and boolean operations, type in-
ference for pattern matching, checking of ambiguity
in patterns [Hos03], compilation of pattern match-
ing [Lev03] and optimization of patterns in presence
of static information [BCF03a], etc. ..

This work is a preliminary step in introducing sim-
ilar ideas to imperative or object-oriented languages.
One possible approach is the one pursued by the
XTATIC language [GP03], which is a merger between
XDucE and C# [ECM02a]. The value and type alge-
bra are stratified, to allow mixing XDUCE types (reg-
ular expressions) and standard .NET CLR [ECMO02b]
types (classes). Concretely, there is a uniform repre-
sentation of sequences, and all the XML types col-
lapse to a single native CLR class at runtime. Be-
cause of the uniform representation, XTATIC can im-
port subtyping from XDUCE (namely, set inclusion):
the CLR does not see any of it at runtime. In order to
have a type-safe implicit subtyping (that is, regular
language inclusion), the XML fragments must be im-
mutable, or some runtime checks must be introduced
at runtime (as for arrays in Java or C#). Also, the
uniform representation adds a lot of boxing and in-
directions. This can be good if the application relies
a lot on subtyping, but it can hurt if the applica-
tion needs fast random access on data (for instance,
accessing an element in the middle of a Kleene-star
requires a traversal of the sequence), want to mutate
data, or needs to cooperate with non-XML parts of
the application (that don’t expect uniform and boxed
values). Finally, collapsing all the XML types to a
unique type means that type information is lost after
compilation; this raises issues for separate compila-

tion.

The starting point of this work was to consider
another approach, and study an alternative imple-
mentation technique for XTATIC. Instead of having
a uniform representation of sequences, we want to
represent them with native CLR constructions. In
this paper, we consider types that are regular expres-
sions. Unlike XDUCE, our types describe not only a
set of possible sequences, but also a concrete struc-
tured representation of values. We use x, +, *, € to
denote concatenation, alternation, Kleene star and
the singleton set containing the empty sequence.

Typically, a value of type (System.Object X int)
should be a struct with two members (that is, a value
type in the terminology of the CLR [GS01]), whose
second member is a CLR unboxed integer. Similarly,
a Kleene-star type int* could be an array or another
collection with random access features. The bene-
fits of this approach are: (1) data is stored more
compactly; (2) it can be accessed (and mutated) effi-
ciently, and (3) it can be made compatible with non-
XML specific code (and if the mapping to CLR, types
retains enough information from XML types, sepa-
rate compilation is made possible without keeping
extra information). The drawback is that we now
need coercions between set-theoretic subtypes. For
instance, (int x int) is a set-theoretic subtype of
int*, but we need a coercion to use a value of the
former where a value of the latter is expected, be-
cause the runtime representations of the two types
are different.

Such a coercion can always be decomposed (at least
conceptually) in two phases: flatten the value of the
subtype to a uniform representation, and then match
that flat sequence against the super type. The match-
ing process is a generalization of pattern matching in
the sense of XDUcCE [HP01], and one might want to
make it available to the programmer as well. Note
that coercions cannot fail, though general pattern
matching can.

Another work worth mentioning in this area is the
Xen language [MS03], which adds to C# some dose
of structural types reminiscent of regular expression
types. They bind structural types to native CLR
types. However, they loose the nice semantic prop-
erties of subtyping and equivalences from regular ex-

pression types, and they don’t have the equivalent
of XDUCE/XTATIC pattern matching. Our work can
also be seen as an attempt to follow the Xen approach
while sticking to “pure” regular expressions types and
patterns.

However, this paper does not propose a language
design, such as language features or type systems. In-
stead, we study the theoretical problem of matching
a flat sequence against a type (regular expression).
The result of the process is a structured value of the
given type. The algorithms we develop could be used
in a variety of language designs (how to access infor-
mation in a structured value; implicit or explicit coer-
cions; mutability of values; different binding seman-
tics for pattern matching, etc). For instance, they
can directly be applied to implement the second pass
of coercions between subtypes (building structured
values from flat sequences).

1.2 The matching problem

The classical theory of regular expressions and au-
tomata deals mainly with the recognition problem,
namely deciding whether a word belongs to the reg-
ular language described by some regular expression.
In particular, two regular expressions are equivalent
with respect to the recognition problem if they denote
the same language.

In the matching problem, regular expressions don’t
only describe a language, but also a way to extract
information from words in this language. This can
be formalized in different ways, for instance adding
capture variables to regular expressions. In this pa-
per, we take a different approach and say that regular
expressions actually denote sets of structured values.
Each value can be flattened to obtain a word. For
instance, the regular expression t* denotes an array
or list of values, each of type ¢t. In particular, it is
possible to access efficiently any element of the array.
Similarly, the sequence regular expression (¢1 X t2)
denotes pairs (vq,vs).

Now, regular expression matching can be seen as
the process of mapping flat words to structured val-
ues. This raises two issues:

e Semantic issue: How to deal with ambiguity in

regular expressions? We can distinguish three
kinds of solutions: (1) return all the possible
matches, (2) disallow ambiguous regular expres-
sions [Hos03], or (3) specify a disambiguation
policy to pick a “best” result. In the setting
of programming languages, we usually want to
return a single result. Also, we don’t want to
force the programmer to rewrite regular expres-
sions to remove ambiguities, because this pro-
cess changes the structure of regular expressions
and thus the structure of resulting values. Fur-
thermore, accepting ambiguous regular expres-
sions cannot be avoided if we want to import,
say XML Schema specifications. Also, they usu-
ally lead to more compact expressions. In this
paper, we focus on the point (3), and study in
detail a given disambiguation policy.

e Implementation issue: How to implement
matching efficiently? The classical technique of
determinization allows recognition of a regular
language in linear time (in the size of the word
to be recognized). Can this be adapted to the
matching problem?

1.3 Related work

Problematic regular expressions There is a
rich literature on efficient implementation of regu-
lar expression pattern matching. For instance, Lau-
rikari [Lau01] studies the submatch addressing prob-
lem, which extracts less information than our match-
ing problem. Other works [Kea91, DF00] address the
matching problem (referred to as “parse extraction”).
A key contribution of our work is the treatment of so-
called problematic regular expressions, together with
a clean formalization of a specific disambiguation pol-
icy.

Indeed, there is a folklore problem with expression-
based implementations of regular expression match-
ing (as opposed to purely automaton-based ap-
proaches, which are not suitable for the matching
problem): they don’t handle correctly the case of a
regular expression t* when ¢ accepts the empty word.
Indeed, an algorithm that would naively follow the
expansion t* ~» (¢t x t*) + € could enter an infinite

loop. Actually, this could even be a problem for defin-
ing the disambiguation policy when it is only given
by a matching algorithm.

Harper [Har99] and Kearns [Kea91] (who speaks of
“horrible possibility” for the non-termination prob-
lem) propose to keep the naive algorithm, but to use
a first pass to rewrite the regular expressions so as
the remove the problematic cases. For instance, let
us consider the regular expression ¢t = (a* x b*)*. We
could rewrite it as t' = ((a x a*) x b* + (b x b*))*.
In general, the size of the regular expression can ex-
plode in the rewriting. Moreover, this solution has
two drawbacks when we consider the matching prob-
lem:

e Changing the regular expression changes the
type of the resulting values. A value of type t' is
not a value of type t.

e The interaction with the disambiguation policy
(see below) is not trivial. In particular, we don’t
see any way to design a rewriting strategy that
preserves the disambiguation policy.

Therefore, we do not want to rewrite the regular ex-
pressions. Another approach is to patch the naive
recognition algorithm to detect precisely the prob-
lematic case and cut the infinite loop [Xi01]. This
is an ad hoc way to define the greedy semantics in
presence of problematic regular expressions.

Our approach is different since we want to axiom-
atize abstractly the disambiguation policy. We iden-
tify three notions of problematic words, regular ex-
pressions, and values (which represent the ways to
match words), relate these three notions, and pro-
pose matching algorithms to deal with the problem-
atic case.

Disambiguation policy Specifying a disambigua-
tion policy can be done by providing an ex-
plicit matching algorithm. For instance, Vansum-
meren [Van03] axiomatizes a longest match semantics
for the Kleene star with a formal system describing
the matching relation. This semantics has a “global”
flavor, in the sense that the part of the word matched
by a Kleene star t* depends only on the language ac-

cepted by t and the context of the star, not its inter-
nal structure.

A more classical semantics is defined by expanding
the Kleene star t* to (t x t*) + ¢ and then relying
on a disambiguation policy for the alternation (say,
first-match policy). This gives a “greedy” semantics,
which is sometimes meant as a local approximation of
the longest match semantics. However, as described
by Vansummeren [Van03], the greedy semantics does
not implement the longest match policy. As a matter
of fact, the greedy semantics really depends on the
internals of Kleene-stars. For instance, consider the
regular expressions t; = ((a x b) +a)* x (b+¢€) and
ts = (a + (a x b))* x (b+¢), and the word w = ab.
With the greedy semantics, when matching w against
t1, the star captures ab, but when matching against
ta, the star captures only a.

Because of its local nature, the greedy semantics
seems eagsier to implement, and maybe to understand
(this point is questionable). Moreover, it has actually
been used as the disambiguation policy in several pro-
gramming languages (XDUCE, CDuce, A™ [TSY02]),
and at least for this reason it deserves attention.

In this paper, we formalize the greedy semantics
by a specification that is independent of any con-
crete matching algorithm. We define a total ordering
on values and specify that the largest possible value
must be extracted. The disambiguation policy is then
formalized as an optimization problem (extract the
largest value with the given flattening). This is sim-
ilar to the formalization of XDuce pattern matching
relation [Hos01, section 2.4.2], except that we tackle
with the difficulty of problematic expressions which
are rejected in [Hos01].

Implementation of matching A naive back-
tracking implementation of the greedy semantics is
quite easy to give (for the recognition problem, see for
instance [TSY02], or [Har99] for the ungreedy vari-
ant). In this paper, we provide a linear time algo-
rithm that works in two passes. The idea is to use a
first pass to annotate the word and avoid backtrack-
ing in the second pass, when the value is constructed.

The first pass scans the word by running a finite
state automaton. The automaton is build directly

on the syntax tree of the regular expression itself (its
states correspond to the nodes of the regular expres-
sion syntax tree). A reviewer pointed us to a previous
work [Kea91] which uses the same idea. Our pre-
sentation is more functional (hence more amenable
to reasoning) and is extended to handle problematic
regular expressions.

The second pass follows closely the syntax of the
regular expression, and is thus very flexible. For in-
stance, one can easily add actions to each node of the
regular expression, extract only relevant information,
or in the setting of a compiler, generate specialized
code for a given regular expression.

2 Notations

Sequences For any set X, we write X* for the
set of sequences over X. Such a sequence is written
[z1;...;2pn]- The empty sequenceis [|. We writez :: s
for the sequence obtained by prepending x in front of
s and s :: z for the sequence obtained by appending x
after s. If s; and s are sequences over X, we define
$1@s4 as their concatenation. We extend these nota-
tions to subsets of X: z :: X1 = {z :: s | s € X1},
XQX, = {31@32 | S; € Xz}

Symbols, words We assume to be given a fixed
alphabet ¥, whose elements are called symbols (they
will be denoted with c,c1,...). Elements of £* are
called words. They will be denoted with w, wy,w’,...

Types The set of types is defined by the following
inductive grammar:

teT == C| (t1 th) | (t1+t2) |t* |E

Values The set of values V(t) of type t is defined
by:

V(c) = {c}

V(tl X tz) = V(tl) X V(tg)

V(tl + tz) = V(t1) + V(tg)

V(t*) = V()*

V(e) = {e}

On the right-hand side of this definition, x denotes
the usual Cartesian product, and + the disjoint
union. A value of type t; X to is written (vy,vs)
(with v; € V(t;)). A value of type t1 + to is writ-
ten e : v (with e € {1,2} and v € V(¢;)). Elements of
V(t*) can be seen as lists or arrays of values of type
t; we will use the letter o to denote them. Note that
the values are structured elements, and no flattening
happen automatically.

The flattening flat(v) of a value v is a word de-
fined by:

flat(c) = [c]

flat((vl, ’Uz)) flat(vl)@flat(v2)
flat(e : v) = flat(v)
flat([vi;...;v,]) = flat(v;)@...Qflat(v,)
flat(e) =

We write T (t) = {flat(v) | v € V(t)} for the lan-
guage accepted by the type t.

3 All-match semantics

In this section, we introduce an auxiliary definition of
an all-match semantics that will be used to define our
disambiguation policy and to study the problematic
regular expressions. For a type t and a word w €
flat(t), we define

My(w) :={v € V(t) | w'. w = flat(v)Qu'}

This set represents all the possible way to match a
prefix of w by a value of type t. For a word w and a
value v € My(w), we write w/v the (unique) word w’
such that w = flat(v)Quw'.

Definition 1 A type is problematic if it contains a
sub-ezpression of the form t* where [| € T ().

Definition 2 A wvalue is problematic if it contains a
sub-value of the form [...;v;...] with flat(v) = [.
The set of non-problematic values of type t is written

VRR(H).

Definition 3 A word w is problematic for a type t
if Mg(w) is infinite.

The following proposition establish the relation be-
tween these three notions.

Proposition 1 Lett be a type. The following asser-
tions are equivalent:

1. t is problematic;
2. there exists a problematic value in V(t);
3. there exists a word w which is problematic for t.

We will often need to do induction both on a type ¢
and a word w. To make it formal, we introduce a well-
founded ordering on pairs (t,w): (t1,w1) < (t2,w2)
if either ¢; is a strict sub-expression of t5 or t; = to
and w; is a strict suffix of ws.

We write M;?(w) = Mi(w) N V*(¢) for the set of
non-problematic prefix matches.

Proposition 2 The following equalities hold:

p ¢} . .cuw =w

Me" (w) (g } oftherwise

Mitxe (W) = {(vi,02) | v1 € M (w),
vy € MP(w/v)}

My, (W) {e:v]ee{l,2},ve P (w)}

M;? (w) = {v:uo |veMP(w),| flat(v) #[] |,
o € M2 (w/v)} UA{[}

= (w) = {e}

This proposition gives a naive algorithm to compute
M;®(w). Indeed, because of the condition flat(v) #]
in the case for M;¥(w), the word w/v is a strict suffix
of w, and we can interpret the equalities as an induc-
tive definition for the function M;*(w) (induction on
(t, w)).

Note that if we remove this condition flat(v) # [|
and replace M"P(_) with M_(_), we get valid equalities.

Corollary 1 For any word w and type t, M;* (w) is
finite.

4 Disambiguation

Let ¢ be a type. The matching problem is to compute
from a word w € T (t) a value v € V(t) whose flat-
tening is w. In general, there are several different so-
lutions. If we want to extract a single value, we need

to define a disambiguation policy, that is, a way to
choose a best value v € V(t) such that w = flat(v).
Moreover, we don’t want to do it by providing an al-
gorithm, or a set of ad hoc rules. Instead, we want to
give a declarative specification for the disambiguation
policy.

A first step is to reject problematic values. This is
meaningful, because if w € T(t), then there always
exist non-problematic values whose flattening is w.
Moreover, if there is a problematic value whose flat-
tening is w, then there are an infinite number of such
values. Since we want to specify the best value as be-
ing the largest one for a specific ordering (see below),
having an infinite number of them is problematic.

Now we need to choose amongst the remaining non-
problematic values. To do this, we introduce a to-
tal ordering on the set V(t), and we specify that the
best value with a given flattening is the largest non-
problematic value for this order.

We define a total (lexicographic) ordering < on
each set V(t) by:

c<c = false
(v1,v9) <(vi,vh):= (v1 < vy)V (v1 =] Avy < v))
(e:v) <(e':v):=(e>e)V(ie=€eAv<)

[<o = o' #]]
vio<v o =@Ww<v)Vw=v Ao <o)
e<e := false

This definition is well-founded by induction on the
size of the values. It captures the idea of a specific
disambiguation rule, namely a left-to-right policy for
the sequencing, a first match policy for the alterna-
tion and a greedy policy for the Kleene star.

Definition 4 Let ¢t be a type and w € T(t).
define:
mg(w) := max<{v € V**(¢) | flat(v) = w}

We

The previous section gives a naive algorithm to com-
pute m;(w). We can first compute the set M;* (w), then
filter it to keep only the values v such that w/v =[],
and finally extract the largest value from this set (if
any). This algorithm is very inefficient because it has
to materialize the set M;* (w), which can be very large.

The recognition algorithm in [TSY02] or [Har99]
can be interpreted in terms of our ordering. It gener-
ates the set M;*(w) lazily, in decreasing order, and it

stops as soon as it reaches the end of the input. To
do this, it uses backtracking implemented with con-
tinuations. Adapting this algorithm to the matching
problem is possible, but the resulting one would be
quite inefficient because of backtracking (moreover,
the continuation have to hold partial values, which
generates a lot of useless memory allocations).

5 A linear time matching algo-
rithm

In this section, we present an algorithm to compute
m(w) in linear time with respect to the size of w, in
particular without backtracking nor useless memory
allocation.

This algorithm works in two passes. The main (sec-
ond) pass is driven by the syntax of the type. It builds
a value from a word by induction on the type, con-
suming the word from the left to the right. This pass
must make some choices: which branch of the alter-
native type t; + t3 to consider, or how many times
to iterate a Kleene star t*. To allow making these
choices without backtracking, a first preprocessing
pass annotates the word with enough information.

The preprocessing pass consists in running an au-
tomaton right-to-left on the word, and keeping the
intermediate states as annotations between each sym-
bol of the word.

5.1 Non-problematic case

We first present an algorithm for the case when w is
not problematic. Recall the following classical defini-
tion.

Definition 5 A finite state automaton (FSA) with
e-transitions is a triple (Q,qy,d) where Q is a finite
set (of states), qr is a distinguished (final) state in
Q,anddC (QxITxQ)U(Q xQ).

The transition relation ¢ — ¢» (for q1,q2 € Q,
w € X*) is defined inductively by the following rules:

e q lﬂ]z if g1 =¢q20r (g1,92) €0

e q ﬂ) ¢ if (q1,¢,q2) €6

o g Y g if g U gy and gy - gs.

We write £(gq) = {w | ¢ — ¢7}-

From types to automata Constructing a non-
deterministic automaton from a regular expression
is a standard operation. However, we need to keep
a tight connection between the automata and the
types. To do so, we define a structure of au-
tomaton directly on types seen as abstract syntax
trees. Formally, we introduce the set of locations (or
nodes) A(t) of a type t (a location is a sequence over
{fst, snd, 1ft,rgt, star}):

Ae) = {[}

A(= {[J}Ufst :: A(t1) Usnd :: A(t2)
At + t2) == {[J}ULEL = A(t1) Uzgt 2 A(t2)
At*) = {[]} U star : A(¢)

A({0}

For a type t and a location | € A(t), we define t.l as
the subtree rooted at location I:

£) :

£ —
(tl X tz).(fst : l) =t
(t1 X t3).(snd :: 1) = ol
(tl + tz).(lft : l) = 1.0
(tl + tg).(rgt : l) = 9.l
(t*).(star :: 1) = tl

Now, let us consider a fixed type to. We take: @ :=
A(to) U {qs} where gy is a fresh element.

If | is a location in tg, the corresponding state will
match all the words of the form w; Qw, where w; is
matched by t9.l and wy is matched by the “rest” of
the regular expression (Lemma 1 below gives a formal
statement corresponding to this intuition).

This notion of “rest” is formalized by the successor
function A(tg) = Q.

sucel(]) _
succ(l:: fst) := [:: snd
succ(l:: snd) := succ(l)
succ(l :: 1ft) := succ(l)
succ(l :: rgt) := succ(l)
succ(l :: star) := [

We now define the § relation for our automaton:

0 = {(,¢,succ(l)) | to.l =c}

l,succ(l)) | to.l =€}

Il fst) | to.l =11 X ta}

1,1 1ft), (1,1 s rgt) | tol = t1 + 12}
1,1 : star), (I, succ(l)) | to.l =t*}

cccc

An example for this construction will be given in the
next session for the problematic case.

The following lemma relates the behavior of the au-
tomaton, the succ(_) function, and the flat semantics
of types.

L) =

Lemma 1 For any location | € \(to):

T (to.l)@QL(succ(l))

First pass We can now describe the first pass of
our matching algorithm. Assume that the input is
w = [c1;...;¢n). The algorithm computes n + 1 sets

of states Qn,...,Qo defined as Q; = {q | ¢ leitaigien]
gr}- That is, it annotates each suffix w' of the input
w by the set of states from which the final state can
be reached by reading w’.

Computing the sets @); is easy. Indeed, consider
the automaton obtained by reversing all the transi-
tions in our automaton (@, g5,d), and use it to scan w
right-to-left, starting from gy, with the classical sub-
set construction (with forward e-closure). Each step
of the simulation corresponds to a suffix [¢;11;. . . ; €]
of w, and the subset built at this step is precisely Q;.

This pass can be done in linear time with respect
to the length of w, and more precisely in a time
O(Jw| |to|) where |w| is the length of w and tg is
the size of tq.

Second pass The second pass is written in pseudo-
ML code, as a function build, that takes a pair (w,1)
of a word and a location I € A(tp) and returns a value
v € V(tol)

let build(w,l) =
(* Invariant:
match to.l with
| ¢ ->c¢
| t1 Xty =>

w € L) *

let v; = build(w,!: fst) in
let v2 = build(w/v1,l:: snd) in
(v1,v2)
| t1 4+t —>
if w € L(I:1ft) then
let v; = build(w,l :: 1ft) in
1:v;
else
let vy = build(w,! : rgt) in
2: vy
| ¢ ->

if w € L(I: star) then
let v = build(w,! :: star) in

let o = build(w/v,l) in
vio
else
I
| e > ¢

The following proposition explains the behavior of
the algorithm, and allows us to establish its sound-
ness.

Proposition 3 If w € L(I) and if to is non-
problematic, then the algorithm build(w,l) re-
turns max<{v € V(to.l) | ' € L(succ(l)). w =
flat(v)Quw'}.

Corollary 2 If w € T(to) and if to is non-
problematic, then the algorithm build(w,[]) re-
turns mgy (w).

Implementation The tests w € £(I) can be im-
plemented in constant time thanks to the first pass.
Indeed, for a suffix w' of the input, w' € £(l) means
that the state [is in the set attached to w' in the first
pass. Similarly, the precondition w € T (to) can also
be tested in constant time.

The second pass also runs in linear time with re-
spect to the length of the input word (and more pre-
cisely in time O(|w| |to|)), because build is called
at most once for each suffix w' of w and each loca-
tion [(the number of locations is finite). This prop-
erty holds because of the non-problematic assump-
tion (otherwise the algorithm may not terminate).

Note that w is used linearly in the algorithm: it can
be implemented as a mutable pointer on the input
sequence (which is updated when the ¢ case reads a
symbol), and it doesn’t need to be passed around.

5.2 Solution to the problematic case

Idea of a solution Let us study the problem with
problematic types in the algorithm from the previous
section. The problem is in the case t* of the algo-
rithm, when [] € 7(t). Indeed, the first recursive call
to build may return a value v such that flat(v) = [],
which implies w/v = w, and the second recursive call
has then the same arguments as the main call. In
this case, the algorithm does not terminate.

This can also be seen on the automaton. If the type
at location [accepts the empty sequence, there are in
the automaton non-trivial paths of e-transitions from
I tol. Theidea is to break these paths, by “disabling”
their last transition (the one that returns to /) when
no symbol has been matched in the input word since
the last visit of the state [.

Here is how to do so. A location [is said to be a
star node if ty.l = t*. Any sublocation [’ is said to be
scoped by [. Note that when the automaton starts
an iteration in a star node (by using the ¢ transition
(1,1 :: star)), the only way to exit the iteration (and
to reach the final state) is to go back to the star node
. The idea is to prevent the automaton to enter back
a star node unless some symbol has been read during
the last iteration. This can be done by disabling the
e-transitions of the form (I, succ(l)), where succ(l)
is a star node scoping [. Concretely, the automaton
keeps track of its current state plus a flag b that re-
members if something has been read since the last
beginning of an iteration in a star.

When a symbol is read, that is, when a transition
of the form (I,¢,1') is used, the flag is set. When an
iteration starts, that is, when a transition (1,1 :: star)
is used, the automaton reset the flag. Then, we just
need to disable the e-transitions (I, succ(l)) where
succ(l) is a star node that scopes ! when the flag
is not set. The flag can then be interpreted as the
requirement: Something needs to be read in order to
exit the current iteration. Consequently, it is natural
to start running the automaton with the flag set, and
to require the flag to be set at the final node.

From problematic types to automata Let us
make this idea formal. We write P for the set of
locations [such that succ(l) is an ancestor of [in the

abstract syntax tree of ¢p (this implies that succ(l) is
a star node). Note that the “problematic” transitions
are the e-transition of the form (I, succ(l)) with [€

P.
We now take: @ := (A(to) U{qs}) x {0,1}. Instead
of (¢,b), we write ¢°. The final state is ¢;. Here is

the transition relation:

do = {(lb c succ()!) | to.l = ¢}

U {(fSt)|t0l—t1Xt2}

U {(: 1ft),(rgt) | to.l =t +t2}
u {(, staro) | tg l =t*}

U {(lb SUCC()) [()}

where the condition (*) is the conjunction of:
(I) to.l is either ¢ or a star t*
(Il) ifl € P, then b=1

Note that the transition relation is monotonic with
respect to the flag b: if ¢ = ¢8, then ¢? = ¢¢' for
some b’ > b.

We write £(¢") := {w | ¢ — g¢}}. As for any
FSA, we can simulate the new automaton either for-
wards or backwards. In particular, it is possible to
annotate a word w with a right-to-left traversal (in
linear time w.r.t the length of w), so as to be able
to answer in constant time any question of the form
w' € L(q®) where w' is a suffix of w. This can be
done with the usual subset construction. The mono-
tonicity remark above implies that whenever ¢° is in
a subset, then ¢! is also in a subset, which allows to
optimize the representation of the subsets.

For a set X and a condition C, we write 1j¢)(X)
to denote X when C holds, and @ otherwise.

Lemma 2 Letl € A(to) and L =T (to.l). Then:
LYY = LQL(succ(l)l)
%) = (L\{IHeL(suce)")

(G

1pgpaper)(L(succ(l)?))

Algorithm We now give a version of the linear-
time matching algorithm which supports the prob-
lematic case. The only difference is that it keeps
track (in the flag b) of the fact that something has
be consumed on the input since the last beginning of

an iteration in a star. The first pass is not modified,
except that the new automaton is used. The second
pass is adapted to keep track of b.

let build’ (w, %) =
(* Invariant: w € E(lb) *)
match to.] with
l ¢ ->c¢
| t1 Xty —>
let w1 = build’ (w,l ::
let b = if (w/v1 =

£st’) in
w) then b else 1 in

let vy = build’ (w/vi,l: sndbl) in
(v1,02)
| t1+t2 >
if w € L(I:1£t%) then
let v; = build’ (w,!: 1ft%) in
1:un
else
let vy = build’ (w,l:: rgt?) in
2: V2
| ¢ >
if w € L(I: star’) then
let v = build’ (w,! : star®) in

(* Invariant: w/v # w *)

let o = build’ (w/v,l') in
vio
else
[
l e > ¢

Proposition 4 Let w € L(I%). Let V be the set
of non-problematic values v € V(to.l) such that
Ju' € L(succ()Y). w = flat(v)Quw' with b = 1
if flat(w) # [] and (b = 1VI & PYAVY = b) if
flat(v) = []. Then the algorithm build'(w,I®) re-
turns max< V.

Corollary 3 If w € T(ty), then the algorithm

build'(w,[]') returns my, (w).

Implementation The same remarks as for the first
algorithm apply for this version. In particular, we can
implement w and b with mutable variables which are
updated in the case ¢ (when a symbol is read); thus,
we don’t need to compute b’ explicitly in the case
t1 X ta.

Example To illustrate the algorithm, let us con-
sider the problematic type to = (¢} x ¢5)*. The pic-
ture below represents both the syntax tree of this
type (dashed lines), and the transitions of the au-
tomaton (arrows). The dotted arrow is the only prob-
lematic transition, which is disabled when b = 0.
Transitions with no symbols are e-transitions. To
simplify the notation, we assign numbers to states.

o] o)

Let us consider the input word w = [e2;¢1]. The
first pass of the algorithm runs the automaton back-
wards on this word, starting in state 6!, and applying
subset construction. In a remark above, we noticed
that if i° is in the subset, then 3! is also in the subset.
Consequently, we write simply ¢ to denote both states
i%,4*. The e-closure of 6! is Sy = {6%,0%,3%, 2! 11}.
Reading the symbol ¢; from S5 leads to the state
4, whose e-closure is S1 = {4,2,1,0,3'}. Reading
the symbol ¢o from S; leads to the state 5, whose
e-closure is Sp = {5,3,2,1,0}.

Now we can run the algorithm on the word w with
the trace [Sp; S1;S2]. The flag b is initially set. The
star node 0 checks whether it must enter an itera-
tion, that is, whether 1 € Sy. This is the case, so
an iteration starts, and b is reset. The star node 2
returns immediately without a single iteration, be-
cause 4 € Sp. But the star node 3 enters an iteration
because 5 € Sy. This iteration consumes the first
symbol of w, and sets b. After this first iteration, the
current subset is S;. As 5 is not in Sy, the iteration
of the node 3 stops, and the control is given back to
the star node 0. Since 1 € Sj, another iteration of
the star 0 starts, and then similarly with an inner
iteration of 2. The second symbol of w is consumed.

10

The star node 3 (resp. 0) refuses to enter an extra
iteration because 5 ¢ Sy (resp. 1 € Ss); note that
1! € Sy, but this is not enough, as this only means
that an iteration could take place without consuming
anything - which is precisely the situation we want to
avoid.

The resulting value is [([], [¢2]); ([¢1],[])]- The two
elements of this sequence reflect the two iterations of
the star node 0.

6 Extensions, variants

More regular expressions We have presented a
limited set of regular expression constructors. We
could easily extend all our definitions and results, to
include for instance:

e Kleene-star with ungreedy-semantics: for this
constructor, the empty sequence is the largest
value instead of being the smallest one, in the
disambiguation ordering. The corresponding
case in the matching algorithm simply tries to re-
turn [] when possible, instead of trying to make
an extra iteration. Note that the two kinds of
Kleene-star could easily cohabit in our frame-
work.

e Non-empty iteration operators t+, with two vari-
ants (greedy and ungreedy).

e Right-context sensitivity operator: %t that
“matches” t but do not remove the correspond-
ing subsequence from the input sequence.

It would be possible to adapt our formalism to cap-
ture only interesting parts of sequences by introduc-
ing explicit capture variables.

Whether our technique can be adapted to deal with
the longest match semantics [Van03] is an open ques-
tion.

Language design We presented here regular ex-
pressions over a finite set of symbols. In a real lan-
guage design with named typing, we could imagine
that regular expressions are built on top of named
types, plus some singleton values (character single-
tons, for instance).

In the design of a language, we can imagine that
the programmer could provide custom types to im-
plement containers for regular expression types (this
would allow the programmer to use pre-existing types
of the language). For instance, in the setting of an
extension to C#, the programmer could match a se-
quence against an existing struct type with public
fields, or a class type (the pattern matcher would then
call the constructor of this class to store the result).
In the setting of an XML-oriented language, there
would probably be a specific type PCDATA, equiv-
alent to char* as for the denoted languages, but
with a compact string representation (for instance
System.String). The idea here is that our match-
ing algorithm allows the implementation to choose
custom concrete representation for values.

Our algorithm can also be adapted to add to an
existing language (without regular expression types)
some kind of regular expression pattern matching of
sequences. For instance, we have implemented as
an extension to a C# compiler a construction that
matches an array of type object[] against a regular
expression built from C# types; it is possible to bind
identifiers to elements of the array and to perform
arbitrary operations (C#statement) at each node of
the regular expression.

Type inference In this work we don’t address the
question of type inference, that is computing for each
node of a type the regular language of all substrings
that can be matched by that node (with the given
disambiguation policy), when the input is restricted
to belong to some given regular language. We be-
lieve that an algorithm for computing these regular
languages could be derived from our matching algo-
rithm, by applying it symbolically to a whole regular
language instead of a single input word.

Optimizations We presented our algorithm as a
two passes process. The first one scans completely
the input word. In some cases, this can be avoided.
For instance, if one knows statically that the flat
sequence is matched by the type (for instance be-
cause the flat sequence was obtained from flattening
a structured value whose type is known at compile

11

time), we can start running the main algorithm, and
only when some test is needed, we run the automaton
(on the current suffix of the input). In some case, a
bounded look-ahead on the sequence can completely
avoid the scan. This is the case if the automaton
associated to the type has the so-called Glushkov de-
terministic property, namely that looking at the next
symbol of the input removes non determinism. In
particular, this is the case with regular expressions
in DTD and in XML Schema specifications.

Acknowledgments

We would like to express our gratitude to the anony-
mous reviewers of PLAN-X 2004 for their comments
and in particular for their bibliographical indications.

References

[BCF03a] Véronique Benzaken, Giuseppe
Castagna, and Alain Frisch. CDuce: An
XML-centric general-purpose language.

In ICFP 03, 2003.

S. Boag, D. Chamberlin, M. Fernandez,
D. Florescu, J. Robie, J. Siméon, and
M. Stefanescu. XQuery 1.0: An XML
Query Language. W3C Working Draft,
http://www.w3.org/TR/xquery/, May

[BCF+03b]

2003.

[DF00] Danny Dub and Marc Feeley. Efficiently
building a parse tree from a regular ex-
pression. Acta Informatica, 37(2):121-
144, 2000.

[ECM02a] ECMA. C# Language Specifica-
tion. http://msdn.microsoft.com/
net/ecma/, 2002.

[ECM02b] ECMA. CLI Partition I - Archi-
tecture. http://msdn.microsoft.com/
net/ecma/, 2002.

[GP03] V. Gapayev and B.C. Pierce. Regular

object types. In Proceedings of the 10th
workshop FOOL, 2003.

[GS01]

[Har99)

[Hos01]

[Hos03]

[HPO1]

[HPO3)]

[HVP00]

[Kea91]

[Lau01]

[Lev03]

[MS03]

Andrew D. Gordon and Don Syme. Typ-
ing a multi-language intermediate code.
ACM SIGPLAN Notices, 36(3):248-260,
2001.

Robert Harper. Proof-directed debug-
ging. Journal of Functional Program-
ming, 9(4):463-469, 1999.

Haruo Hosoya. Regular Expression Types
for XML. PhD thesis, The University of
Tokyo, 2001.

H. Hosoya. Regular expressions pattern
matching: a simpler design. Unpublished
manuscript, February 2003.

Haruo Hosoya and Benjamin C. Pierce.
Regular expression pattern matching
for XML. In The 25th Annual
ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Lan-
guages, 2001.

Haruo Hosoya and Benjamin C. Pierce.
XDuce: A typed XML processing lan-
guage. ACM Transactions on Internet
Technology, 3(2):117-148, 2003.

Haruo Hosoya, Jéréme Vouillon, and
Benjamin C. Pierce. Regular expression
types for XML. In ICFP 00, volume
35(9) of SIGPLAN Notices, 2000.

Steven. M. Kearns. Extending regular
expressions with context operators and
parse extraction. Software - practice and
experience, 21(8):787-804, 1991.

Ville Laurikari. Efficient submatch ad-
dressing for regular expressions. Master’s
thesis, Helsinki University of Technology,
2001.

Michael Levin. Compiling regular pat-
terns. In ICFP 03, 2003.

Erik Meijer and Wolfram Schulte. Uni-
fying tables, objects, and documents. In
DP-COOL 2003, 2003.

12

[TSY02]

[Van03]

[Xi01]

Naoshi Tabuchi, Eijiro Sumii, , and Aki-
nori Yonezawa. Regular expression types
for strings in a text processing language.
In Workshop on Types in Programming
(TIP), 2002.

Stijn Vansummeren. Unique pattern
matching in strings. Technical report,
University of Limburg, 2003. http://
arXiv.org/abs/cs/0302004.

Hongwei Xi. Dependent types for pro-
gram termination verification. In Logic
in Computer Science, 2001.

