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Abstract This paper presents our compilation strategy to produce efficient code for pattern
matching in the CDuce compiler, taking into account static information provided
by the type system.

1. Introduction

Emergence of XML[BPSM98] has given tree automata theory a renewed
importance[Nev02]. Indeed, XML schema languages such as DTD, XML-
Schema[TBMM01, SW03], Relax-NG describe more or less regular languages
of XML documents (considered as trees). Consequently, recent XML-oriented
typed programming languages such as XDuce [Hos00, HP02], CDuce [BCF03,
FCB02], Xtatic [GP03] have type algebras where types denote regular tree
languages. An essential ingredient of these languages is a powerful pattern
matching operation. A pattern is a declarative way to extract information from
an XML tree. Because of this declarative nature, language implementors have
to propose efficient execution models for pattern matching.

This paper describes our approach in implementing pattern matching in
CDuce1. To simplify the presentation, the paper studies only a restricted form
of pattern matching, without capture variables and with a very simple kind of
trees. Of course, our implementation handles capture variables and the full
set of types and patterns constructors in CDuce. In the simplified form, the
pattern matching problem is a recognition problem, namely deciding whether
a treev belongs to a regular tree languageX or not. If the regular language
is given by a tree automaton, a top-down recognition algorithm may have to
backtrack, and the recognition time is not linear in the size of the input tree.
It is well-known that any tree automaton can be transformed into an equiva-

1CDuce is available for download athttp://www.cduce.org/.



lent bottom-up deterministic automaton, which ensures linear execution time.
However, the size of the automaton may be huge even for simple languages,
which can make this approach unfeasible in practice.

The static type system of the language provides an upper approximation
for the type of the matched treev, that is some regular languageX0 such
thatv is necessarily inX0. Taking this information into account, it should be
possible to avoid looking at some subtree ofv. However, classical bottom-up
tree automata are bound to look at the whole tree, and they cannot take this
kind of static knowledge into account. Let us give an example to illustrate this
point. Consider the following CDuce program:

type A = <a>[ A* ]
type B = <b>[ B* ]

let f ((A|B)->Int) A ->0 | B ->1
let g ((A|B)->Int) <a>_->0 | _ ->1

The first lines introduce two typesA andB. They denote XML documents
with only <a> (resp.<b>) tags and nothing else. Then two functionsf andg
are defined. Both functions take an argument which is either a document of
typeA or of typeB. They return 1 when the argument is of typeA, and 0 when
the argument is of typeB. The declaration ofg suggests an efficient execution
schema: one just has to look at the root tag to answer the question. Instead,
if we consider only the body off, we have to look at the whole argument,
and check that every node of the argument is tagged with<a> (resp. with
<b>); whatever technique we use - deterministic bottom-up or backtracking
top-down - it will be less efficient thang.

But if we use the information given by the function interface, we know that
the argument is necessarily of typeA or of typeB, and we can compilef exactly
as we compileg. This example demonstrates that taking static information into
account is crucial to provide efficient execution for declarative patterns as inf.

Contributions. The main contributions of this paper are the definition of a
new kind of deterministic bottom-up tree automata, called NUA (non-uniform
automata) and a compilation algorithm that produces an efficient NUA equiv-
alent to a given non-deterministic (classical) automaton, taking into account
static knowledge about the matched trees.

A central idea in XDuce-like languages is that XML documents live in an
untyped world and that XML types are structural. This is in contrast with
the XML Schema philosophy, whose data model (after validation) attaches
type namesto XML nodes. Moreover, in XML Schema, the context and the
tag of an element are enough to know the exact XML Schema type of the
element. In XDuce-like languages, in general, one may have to look deep



inside the elements to check type constraints. Our work shows how an efficient
compilation of pattern matching can avoid this costly checks: our compilation
algorithm detects when the context and the tag are enough to decide of the type
of an element without looking at its content. This work supports the claim that
a structural data modelà la XDuce can be implemented as efficiently as a data
model with explicit type namesà la XML Schema.

Related work. Levin [Lev03] also addresses the implementation of pat-
tern matching in XDuce-like programming languages. He introduces a general
framework (intermediate language, matching automata) to reason about the
compilation of patterns, and he proposes several compilation strategies. He
leaves apart the issue of using static types for compilation, which is the main
motivation for our work. So the two works are complementary: our compila-
tion algorithm could probably be re-cast in his formalism.

Neumann and Seidl [NS98] introduce push-down automata to locate effi-
ciently nodes in an XML tree. Our automata share with push-down automata
the idea of threading a control-state through the tree. The formalisms are quite
different because we work with simpler kind of automata (binary trees with
labeled leaves, whereas they have unranked labeled forests), and we explicitly
distinguish betwen control states (threaded through the tree) and results (used
in particular to update the state). However, using an encoding of unranked trees
in binary trees, we believe that the two notions of automata are isomorphic. But
again, they don’t address the issue of using static information to improve the
automata, which is our main technical contribution. It should be possible to
adapt our compilation algorithm to their push-down automata setting, but it
would probably result in an extremely complex technical presentation. This
motivates us working with simpler kinds of tree and automata.

2. Technical framework

In this section, we introduce our technical framework. We consider one
of the simplest form of trees: binary trees with labeled leafs and unlabeled
nodes. Any kind of ordered trees (n-ary, ranked, unranked; with or without
labeled nodes) can beencoded, and the notion of regular language is invariant
under these encodings. (Note that the encodings change the expressive power
of top-down deterministic tree automata, but this is not the case for the “non-
uniform” automata we are going to define.) Using this very simple kind of
trees simplifies the presentation.

2.1 Trees and classical tree automata

Definition 1 Let Σ be a (fixed) finite set of symbols. A treev is either a
symbola ∈ Σ or a pair of trees(v1, v2). The set of trees is writtenV .



Definition 2 (Tree automaton) A (non-deterministic) tree automaton
(NDTA) is a pair A = (R, δ) whereR is a finite set ofnodes, and δ ⊆
(Σ×R) ∪ (R×R×R).

Each noder in a NDTA defines a subsetA JrK of V . These sets can be defined
by the following mutually recursive equations:

A JrK = {a ∈ Σ | (a, r) ∈ δ} ∪
⋃

(r1,r2,r)∈δ

A Jr1K×A Jr2K

We writeA JrK2 = A JrK ∩ (V × V ). By definition, a regular language is a
subset of the formA JrK for some NDTAA and some noder. We say that this
language isdefinedby A . There are two classical notions of deterministic tree
automata: (1) Top-down deterministic automata (TDDTA) satisfy the property:
{(r1, r2) | (r1, r2, r) ∈ δ} has at most one element for any noder. These
automata are strictly weaker than NDTA in terms of expressive power (they
cannot define all the regular languages). (2) Bottom-up deterministic automata
(DTA) satisfy the property:{r | (r1, r2, r) ∈ δ} has at most one element for
any pair of nodes(r1, r2), and similarly for the sets{r | (a, r) ∈ δ} with
a ∈ Σ. These automata have the same expressive power as NDTA.

Remark 3 We use a non-standard terminology of nodes instead of states.
The reason is that we are going to split this notion in two: results and con-
trol states. Results will correspond to nodes in a DTA, and control states will
correspond to nodes in TDDTA.

In order to motivate the use of a different kind of automaton, let us introduce
different notions of context. During the traversal of a tree, an automaton com-
putes and gathers information. The amount of extracted information can only
depend on the context of the current location in the tree. A top-down recog-
nizer (for TDDTA) can only propagate information downwards: the context
of a location is thus the path from the root to the location (“upward context”).
A bottom-up recognizer propagates information upwards: the context is the
whole subtree rooted at the current location (“downward context”).

Top-down algorithms are more efficient when the relevant information is
located near the root. For instance, going back to the CDuce example in the
introduction, we see easily that the functiong should be implemented by start-
ing the traversal from the root of the tree, since looking only at the root tag is
enough. Patterns in CDuce tend to look in priority near the root of the trees
instead of their leafs. However, because of their lack of expressive power, pure
TDDTA cannot be used in general. Also, since they perform independant com-
putations of the left and the right children of a location in a tree, they cannot
use information gathered in the left subtree to guide the computation in the
right subtree.



The idea behind push-down automata is to traverse each node twice. A
location is first entered in a given context, some computation is performed on
the subtree, and the location is entered again with a new context. When a
location is first entered, the context is the path from the root, but also all the
“left siblings” of these locations and their subtrees (we call this the “up/left
context” of the location). After the computation on the children, the context
also includes the subtree. The notion of non-uniform automata we are going
to introduce is a slight variation on this idea: a location is entered three times.
Indeed, when computing on a tree which is a pair, the automaton considers the
left and right subtrees sequentially. Between the two, the location is entered
again to update its context, and the automaton uses the information gathered
on the left subtree to guide the computation on the right subtree. This richer
notion of context allows to combine the advantages of DTA and TDDTA, and
more.

2.2 Non-uniform automata

We now introduce a new kind of tree automaton: non-uniform automata
(NUA in short). They can be seen as (a generalization of) a merger between
DTA and TDDTA. Let us call “results” (resp. “control states”) the nodes of
DTA (resp. TDDTA). We are going to use these two notions in parallel. A
current “control state” is threaded and updated during a depth-first left-to-right
traversal of the tree (this control generalizes the one of TDDTA, where the
state is only propagated downwards), and each control stateq has its own set
of resultsR(q). Of course, the transition relation depends onq.

When the automaton has to deal with a tree(v1, v2) in a stateq, it starts
with some computation onv1 using a new stateq1 = left(q) computed from
the current one, as for a TDDTA. This gives a resultr1 which is immediately
used to compute the stateq2 = right(q, r1). Note that contrary to TDDTA,
q2 depends not only onq, but also on the computation performed on the left
subtree. The computation onv2 is done from this stateq2, and it returns a result
r2. As for classical bottom-up deterministic automata, the result for(v1, v2)
is then computed fromr1 andr2 (andq). Let us formalize the definition of
non-uniform automata. We define only the deterministic version.

Definition 4 A non-uniform automatonA is given by a finite set of states
Q, and for each stateq ∈ Q:

A finite set of resultsR(q).

A stateleft (q) ∈ Q.

For any resultr1 ∈ R(left (q)), a stateright (q, r1) ∈ Q.



For any resultr1 ∈ R(left (q)), and any resultr2 ∈ R(right (q, r1)),
a resultδ2(q, r1, r2) ∈ R(q).

A partialfunctionδ0(q, ) : Σ → R(q).

Theresultof the automaton from a stateq on an inputv ∈ V , writtenA (q, v),
is the element ofR(q) defined by induction onv:

A (q, a) = δ0(q, a)
A (q, (v1, v2)) = δ2(q, r1, r2) where

{
r1 = A (left(q), v1)
r2 = A (right(q, r1), v2)

Because the functionsδ0(q, ) are partial, so are theA (q, ). We writeDom(q)
for the set of treesv such thatA (q, v) is defined.

Our definition of NUAs (and more generally, the class of push down au-
tomata [NS98]) is flexible enough to simulate DTA and TDDTA (without ex-
plosion of size). Indeed, the definition of a NUA boils down to that of a DTA
whenQ is a singleton{q}: the set of results of the NUA (for the only state)
corresponds to the set of nodes of the DTA. It is also possible to convert a TD-
DTA to a NUA of the same size: The set of states of the NUA corresponds to
the set of nodes of the TDDTA, and all the states have a single result.

A pair (q, r) with q ∈ Q andr ∈ R(q) is called astate-resultpair. For such
a pair, we writeA Jq; rK = {v | A (q, v) = r} for the set of trees yielding
resultr starting from initial stateq. The reader is invited to check that a NUA
can be interpreted as a non-deterministic tree automata whose nodes are state-
result pairs. Consequently, the expressive power of NUAs (that is the class of
languages of the formA Jq; rK) is the same as NDTAs (ie: they can define only
regular languages). The point is that the definition of NUAs gives an efficient
execution strategy.

Running a NUA. The definition ofA (q, v) defines an efficient algorithm
that operates in linear time with respect to the size ofv. We will only run
this algorithm for treesv which are knowna priori to be in Dom(q). This
is because of the intended use of the theory (compilation of CDuce pattern
matching): indeed, the static type system in CDuce ensures exhaustivity of
pattern matching.

An important remark: the flexibility of having a different set of results for
each state makes it possible to short-cut the inductive definition and completely
ignore subtrees. Indeed, as soon as the algorithm reaches a subtreev′ in a state
q′ such thatR(q′) is a singleton, it can directly return without even looking at
v′.

3. The algorithm

Different NUA can perform the same computation with different complex-
ities (that is, they can ignore more or fewer subtrees of the input). To obtain



efficient NUA, the objective is to keep the set of resultsR(q) as small as possi-
ble, because whenR(q) is a singleton, we can drop the corresponding subtree
(and havingR(q) small will help “subsequent”R(q′) to be singletons).

Also, we want to build NUAs that take static information about the input
trees into account. Hopefully, we have the opportunity of definingpartial
states, whose domain is not the whole set of trees.

In this section, we present an algorithm to build an efficient NUA to solve
the dispatch problem under static knowledge.

Given a regular languageX0 (the input domain) and regular languagesX1, . . . , Xn

(the dispatch alternatives), we want to compute efficiently for any treev ∈ X0

the set{i | i ∈ {1, . . . , n}, v ∈ Xi}.

3.1 Intuitions

Let us consider four regular languagesX1, X2, X3, X4, and letX = (X1×
X2)∪(X3×X4). Imagine we want to recognize the languageX without static
information (X0 = V ). If we are given a tree(v1, v2), we must first perform
some computation onv1. Namely, it is enough to know, after this computation,
if v1 is in X1 or not, and similarly forX3. It is not necessary to do any other
computation; for instance, we don’t care whetherv1 is in X2 or not. According
to the presence ofv1 in X1 and/orX3, we continue with different computations
of v2:

It v1 is neither inX1 nor in X3, we already know thatv is not in X
without looking atv2. We can stop the computation immediately.

If v1 is in X1 but not inX3, we have to check whetherv2 is in X2.

If v1 is in X3 but not inX1, we have to check whetherv2 is in X4.

If v1 is in X1 and inX3, we must check whetherv2 is in X2 or not, and
in X4 or not. But actually, this is too much. We only have to find out
whether it is inX2∪X4 or not, and this can be easier to do (for instance,
if X2 ∪X4 = V , we don’t have anything to do at all).

This is the general case, but in some special cases, it is not necessary to know
both whetherv1 is in X1 andwhether it is inX3. For instance, imagine that
X2 = X4. Then we don’t have to distinguish the three casesv1 ∈ X1\X3,
v1 ∈ X3\X1, v1 ∈ X1 ∩X3. Indeed, we only need to check whetherv1 is in
X1 ∪ X3 or not. We could as well have mergedX1 × X2 andX3 × X4 into
(X1 ∪X3)×X2 in this case. We can also mergeX1×X2 andX3×X4 if one
of them is a subset of the other.

Now consider the case whereX0 is a proper subset ofV (non trivial static
information). If for instance,X0 ∩ (X1 × X2) = ∅, we can simply ignore
the rectangleX1 × X2. Also, in general, we deduce some information about



v1: it belongs toπ1(X0) = {v0
1 | (v0

1, v
0
2) ∈ X0}. After performing some

computation onv1, we get more information. For instance, we may deduce
v1 ∈ X1\X3. Then we know thatv2 is in π2(X0∩ (X1\X3)×V ). In general,
we can combine the static information and the results we get for the a left
subtree to get a better static information for the right subtree. Propagating a
more precise information allows to ignore more rectangles.

The static information allows us to weaken the condition to merge two
rectanglesX1 × X2 and X3 × X4. Indeed, it is enough to check whether
π2(X0 ∩ (X1 ×X2)) = π2(X0 ∩ (X3 ×X4)) (which is strictly weaker than
X2 = X4).

In some cases, there are decisions to make. Imagine thatX0 = X1 ×
X2 ∪ X3 × X4, and we want to check if a tree(v1, v2) is in X1 × X2. If
we suppose thatX1 ∩ X3 = ∅ andX2 ∩ X4 = ∅, we can work onv1 to
see if it is inX1 or not, or we can work onv2 to see if it is inX2 or not.
We don’t need to do both, and we must thus choose which one to do. We
always choose to perform some computation onv1 if it allows to gain useful
knowledge onv. This choice allows to stop the top-down left-to-right traversal
of the tree as soon as possible. This choice is relevant when considering the
way CDuce encodes sequences and XML trees as binary trees. Indeed, the
choice corresponds to:(1) extracting information from an XML tag to guide
the computation on the content of the element, and(2) extracting information
from the first children before considering the following ones.

3.2 Types

We have several regular languagesX0, X1, . . . , Xn as inputs, and our al-
gorithm produces other languages as intermediate steps. Instead of working
with several different NDTA to define these languages, we assume that all the
regular languages we will consider are defined by the same fixed NDTAA
(each language is defined by a specific state of this NDTA). This assumption is
not restrictive since it is always possible to take the (disjoint) union of several
NDTA. Moreover, we assume that this NDTA has the following properties:

Boolean-completeness.The class of languages defined byA (that is,
the languages of the formA JrK), is closed under boolean operations
(union, intersection, complement with respect toV ).

Canonicity. If (r1, r2, r) ∈ δ, then: A Jr1K 6= ∅,A Jr2K 6= ∅. More-
over, if we consider another pair(r′1, r

′
2) 6= (r1, r2) such that(r′1, r

′
2, r) ∈

δ, thenA Jr1K ∩A Jr′1K = ∅ andA Jr2K 6= A Jr′2K.

It is well-known that the class of all regular tree languages is closed under
boolean operations. The first property says that the class of languages defined
by the fixed NDTAA is closed under these operations. Starting from an arbi-



trary NDTA, it is possible to extend it to a Boolean-complete one2. If r1, r2

are two nodes, we writer1 ∨ r2 (resp.r1 ∧ r2, ¬r1) for some noder such that
A JrK = A Jr1K ∪A Jr2K (resp.A Jr1K ∩A Jr2K, V \A Jr1K).

The Canonicity property forces a canonical way to decompose the setA JrK2

as a finite union of rectangles of the formA Jr1K×A Jr2K. For instance, it dis-
allows the following situation:{(r1, r2) | (r1, r2, r) ∈ δ} = {(a, c), (b, c)}. In
that case, the decomposition ofA JrK2 given byδ would have two rectangles
with the same second component. To eliminate this situation, we can merge
the two rectangles, to keep only(a ∨ b, c). We also want to avoid more com-
plex situations, for instance where a rectangle in the decomposition ofA JrK2

is covered by the union of others rectangles in this decomposition. It is always
possible to modify the transition relationδ of a Boolean-complete NDTA to en-
force the Canonicity property (first, by splitting the rectangles to enforce non-
intersecting first-components, and then by merging rectangles with the same
second component). This process does not break Boolean completeness since
it doesn’t change the class of languages defined by the automaton. The defini-
tion of Canonicity is asymmetric with respect tor1 andr2; this corresponds to
the fixed traversal order of a tree during the run of a NUA (left-to-right).

We will use the word “type” to refer to the nodes of our fixed NDTAA .
Indeed, they correspond closely to the types of the CDuce (internal) type al-
gebra, which support boolean operations and a canonical decomposition of
products. Note that the set of types is finite, here. In what follows, we uset, t1,
t2, . . . to range over nodes of the given NDTA, andr, r1, r2, . . . to range over
nodes of the generated NUA. We also writeJtK instead ofA JtK. We define
∆2(t) = {(t1, t2) | (t1, t2, t) ∈ δ}, and∆0(t) = {a | (a, t) ∈ δ}.

3.3 Filters

Even if we start with a single check to perform (“is the tree inX?”), several
checks may have to be performed in parallel on a subtree (“isv1 in X1 and/or
in X3?”); we will call any finite set of such checks afilter.

A filter is intended to be applied to any treev from a given language; for
such a tree, the filter must compute which of its elements containv.

Definition 5 Let τ be a type. Aτ -filter is a set of typesρ such that∀t ∈
ρ. JtK ⊆ JτK.
The result of aτ -filter ρ for a treev ∈ JτK, writtenv/ρ, is defined by:

v/ρ = {t ∈ ρ | v ∈ JtK}

2The proof is outside the scope of this paper. In a nutshell, this can be done by adding nodes that represent
formal boolean combinations of existing nodes (using a finite syntax for combinations, like disjunctive
normal forms). See for instance [FCB02]. This process induces an exponential blowup of the size of the
automaton, but this is not an issue in practice since we don’t need to compute the whole automaton.



Definition 6 Letρ be aτ -filter. If ρ′ ⊆ ρ, we writeρ′|ρ for the type:

τ ∧
∧
t∈ρ′

t ∧
∧

t∈ρ\ρ′

¬t

(theτ in this formula is only useful for the caseρ′ = ∅)

Lemma 7 Let ρ be aτ -filter andv a tree inJτK. Thenv/ρ is the only subset
ρ′ ⊆ ρ such thatv ∈ Jρ′|ρK.

Our construction consists of building a NUA whose states are pairs(τ, ρ) of
a typeτ and aτ -filter ρ. Note that the set of all these pairs is finite, because we
are working with a fixed NDTA to define all the types, so there is only a finite
number of them.

3.4 Discussion

The typeτ represents the static information we have about the tree, andρ
represents the tests we want to perform on a treev which is known to be inτ .
The expected behavior of the automaton is:

∀v ∈ JτK. A ((τ, ρ), v) = v/ρ

Moreover, the state(τ, ρ) can simply reject any tree outsideJτK. Actually,
we will build a NUA such thatDom((τ, ρ)) = JτK.

The rest of the section describes how the NUA should behave on a given
input. It will thus mix the description of the expected behavior of the NUA at
runtime and the (compile-time) construction we deduce from this behavior.

Results. In order to minimize the set of possible results for a state(τ, ρ), we
consider only theρ′ ⊆ ρ that can be obtained for an input inτ :

R((τ, ρ)) = {ρ′ ⊆ ρ | Jρ′|ρK 6= ∅}

Note thatρ′ is in this set if and only if there is av ∈ JτK such thatv/ρ = ρ′.

Left. Assume we are given a treev = (v1, v2) which is known to be in a
type τ . What can we say aboutv1? Trivially, it is in one of the setsJt1K for
(t1, t2) ∈ ∆2(τ). We define:

π1(τ) =
∨

(t1,t2)∈∆2(τ)

t1

It is the best information we can find aboutv1 (we use the assumption that the
rectangles in the decomposition are not empty - this is part of the Canonicity
property). Note that:Jπ1(τ)K = {v1 | (v1, v2) ∈ JτK}.



Now assume we are given aτ -filter ρ that represents the tests we have to
perform onv. Which tests do we have to perform onv1? It is enough to
consider those tests given by theπ1(τ)-filter:

π1(ρ) = {t1 | (t1, t2) ∈ ∆2(t), t ∈ ρ}

This set is indeed aπ1(τ)-filter. It corresponds to our choice of performing
any computation onv1 which can potentially simplify the work we have to do
later onv2. Indeed, two different rectangles in∆2(t) for somet ∈ ρ have dif-
ferent second projections because of the Canonicity property. This discussion
suggests to take:

left((τ, ρ)) = (π1(τ), π1(ρ))

Right. Let us continue our discussion with the treev = (v1, v2). The NUA
performs some computation onv1 from the state(τ1, ρ1) with τ1 = π1(τ) and
ρ1 = π1(ρ). Let ρ′1 be the returned result, which is the set of all the types
t1 ∈ ρ1 such thatv1 ∈ Jt1K. What can be said aboutv2? It is in the following
type:

π2(τ ; ρ′1) =
∨

(t1,t2)∈∆2(τ) | Jt1∧(ρ′
1|ρ1)K6=∅

t2

This type represents the best information we can get aboutv2 knowing that
v ∈ JτK andv1 ∈ Jρ′1|ρ1K. Indeed, its interpretation is:

{v2 | (v1, v2) ∈ JτK, ρ′1 = v1/ρ1}

Now we must compute the checks we have to perform onv2. Let us consider
a given typet ∈ ρ. If (t1, t2) ∈ ∆2(t), we havet1 ∈ ρ1, so we know if
v1 ∈ Jt1K or not (namely,v1 ∈ Jt1K ⇐⇒ t1 ∈ ρ′1). There is at most
one pair(t1, t2) ∈ ∆2(t) such thatv1 ∈ Jt1K. Indeed, two rectangles in the
decomposition∆2(t) have non-intersecting first projection (Canonicity). If
there is such a pair, we must check ifv2 is in Jt2K or not, and this will be
enough to decide ifv is in JtK or not. We thus take:

π2(ρ; ρ′1) = {t2 | (t1, t2) ∈ ∆2(t), t ∈ ρ, t1 ∈ ρ′1}

This set has at most as many elements asρ by the remark above. Finally, the
“right” transition is:

right((τ, ρ), ρ′1) = (π2(τ ; ρ′1), π2(ρ; ρ′1))

Computing the result. We writeτ2 = π2(τ ; ρ′1) andρ2 = π2(ρ; ρ′1). We
can run the NUA from this state(τ2, ρ2) on the treev2, and get a resultρ′2 ⊆ ρ2

collecting thet2 ∈ ρ2 such thatv2 ∈ Jt2K. For a typet ∈ ρ, and a rectangle
(t1, t2) in its decomposition∆2(t), we have:

v ∈ Jt1K× Jt2K ⇐⇒ (t1 ∈ ρ′1) ∧ (t2 ∈ ρ′2)



So the result of running the NUA from the state(τ, ρ) on the treev is:

δ2((τ, ρ), ρ′1, ρ
′
2) = {t ∈ ρ |∆2(t) ∩ (ρ′1 × ρ′2) 6= ∅}

Result for symbols. Finally, we must consider the case when the treev is a
symbola ∈ Σ. The NUA has only to accept for the state(τ, ρ) trees in the set
JτK; so if a 6∈ ∆0(τ), we can letδ0((τ, ρ), a) undefined. Otherwise, we take:

δ0((τ, ρ), a) = {t ∈ ρ | a ∈ ∆0(t)}

3.5 Formal construction, soundness

We can summarize the above discussion by an abstract construction of the
NUA:

the set of states are the pairs(τ, ρ) whereτ is a type andρ a τ -filter;

R((τ, ρ)) = {ρ′ ⊆ ρ | Jρ′|ρK 6= ∅};

left((τ, ρ)) = (π1(τ), π1(ρ)) where:
π1(τ) =

∨
{t1 | (t1, t2) ∈ ∆2(τ)} and

π1(ρ) = {t1 | (t1, t2) ∈ ∆2(t), t ∈ ρ};

right((τ, ρ), ρ′1) = (π2(τ ; ρ′1), π2(ρ; ρ′1)) where:
ρ1 = π1(ρ),
π2(τ ; ρ′1) =

∨
{t2 | (t1, t2) ∈ ∆2(τ), Jt1 ∧ (ρ′1|ρ1)K 6= ∅} and

π2(ρ; ρ′1) = {t2 | (t1, t2) ∈ ∆2(t), t ∈ ρ, t1 ∈ ρ′1};

δ2((τ, ρ), ρ′1, ρ
′
2) = {t ∈ ρ |∆2(t) ∩ (ρ′1 × ρ′2) 6= ∅};

δ0((τ, ρ), a) = {t ∈ ρ | a ∈ ∆0(t)} if a ∈ ∆0(τ) (undefined otherwise)

This equations give explicitly for each stateq the set of resultsR(q) and the
transition functions for this state. This opens the door to a lazy construction of
the NUA from an initial state, so as to build only the part of the NUA that is ef-
fectively used in a run. The abstract presentation however has the advantage of
simplicity (exactly as for the abstract subset construction for the determiniza-
tion of automata).

The construction has a nice property: the efficiency of the constructed NUA
(that is, the positions where it will ignore subtrees of an input) does not depend
on the typeτ and the types inρ (which are syntactic objects), but only on the
languages denoted by these types. This is because of the Canonicity property.
As a consequence, there is no need to “optimize” the types before running the
algorithm.

The following theorem states that the constructed NUA computes what it is
supposed to compute.



Theorem 8 The above construction is well defined and explicitly computable.
The resulting NUA satisfies the following properties for any state(τ, ρ):

Dom((τ, ρ)) = JτK

∀v ∈ JτK. A ((τ, ρ), v) = v/ρ

∀ρ′ ∈ R((τ, ρ)). ∃v. A ((τ, ρ), v) = ρ′

The third point simply states that there are no “useless” result (a result is use-
less if it cannot be obtained for a value in the domain). The proof of the theo-
rem is by induction on trees, and follows the lines of the discussion above.

3.6 An example

In this section, we give a very simple example of a NUA produced by our
algorithm. We assume thatΣ contains at least two symbolsa,b and possibly
others. We consider a typeta (resp. tb) which denotes all the trees with only
a leaves (resp.b leaves). Our static informationτ0 is ta ∨ tb, and the filter we
are interested in isρ0 = {ta, tb}. Assuming proper choices for the NDTA that
defines the types, the construction gives for the initial stateq0 = (τ0, ρ0):

R(q0) = {{ta}, {tb}}

left(q0) = q0

right(q0, {ta}) = (ta, {ta}); right(q0, {tb}) = (tb, {tb})

δ2(q0, {ta}, {ta}) = {ta}; δ2(q0, {tb}, {tb}) = {tb}

δ0(q0, a) = {ta}; δ0(q0, b) = {tb}; δ0(q0, c) undefined ifc 6= a, c 6= b

There is no need to give the transition functions for the statesqa = (ta, {ta})
andqb = (tb, {tb}) because they each have a single result (R(qa) = {{ta}}
andR(qb) = {{tb}}), so the NUA will simply skip the corresponding subtrees.
The behavior of the NUA is simple to understand: it goes directly to the left-
most leaf and returns immediately. In particular, it traverses a single path from
the root to a leaf and ignores the rest of the tree.

3.7 Implementation

We rely a lot on the possibility of checking emptiness of a type (JtK = ∅).
For instance, the definition ofR((τ, ρ)) requires to check a lot of types for
emptyness. All the techniques developed for the implementation of XDuce
and CDuce subtyping algorithms can be used to do it efficiently. In particular,
because of caching, the total cost for all the calls to the emptiness checking
procedure does not depend on the number of calls (there is a single exponen-
tial cost), so they are “cheap” and we can afford a lot of them. CDuce also



demonstrates an efficient implementation of the “type algebra” with boolean
combinations and canonical decomposition.

The number of states(τ, ρ) is finite, but it is huge. However, our construc-
tion proceeds in a top-down way: starting from a given state(τ, ρ), it defines
its set of results and its transitions explicitly. Hence we are able to build the
NUA “lazily” (either by computing all the reachable states, or by waiting to
consume inputs - this is how the CDuce implementation works).

We haven’t studied the theoretical complexity of our algorithm, but it is
clearly at least as costly as the inclusion problem for regular tree languages.
However, in practice, the algorithm works well. It has been successfully used
to compile non-trivial CDuce programs.

Preliminary benchmarks [BCF03] suggest very good runtime performances,
and we believe that our compilation strategy for pattern matching is the main
reason for that.
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