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Introduction

�

Duce is a general purpose typed and higher-order
functional programming language

Adapted to XML applications: XML features are introduced
through syntactic sugar over a core language

Overtakes some limitations of XDuce

Put most of the technical difficulties of the type system in the
subtyping relation and the type algebra and keep it simple by
using a semantic approach.
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Overview of the talk

XDuce and

�

Duce

�

Duce language
Types
Pattern matching
Functions (overloaded, first-class)

Compilation

Extensions for queries

Implementation issues
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XDuce

(H. Hosoya, B. Pierce, J. Vouillon)

XDuce: a typed programming language for XML applications
value = XML document (tree)
type = regular tree language
subtyping = inclusion of languages

A powerful pattern matching operation
Recursive patterns to extract information in the middle of a
document
Precise type inference for capture variables
Push/pull duality reflects in patterns/expressions
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XDuce CDuce (1/2)

For those who know about XDuce ...

Recast XDuce features in a general purpose language, with a
powerful type algebra

Interoperability with non-XML languages
Useful outside XML world

First-class citizen and overloaded functions
Expressivity and reusability
Late bound overloading reminiscent of OOP style
Complex applications written directly in

�

Duce
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XDuce CDuce (2/2)

For those who know about XDuce ...

Model XML attributes with records, instead of “commutable
elements”

Extend pattern matching
Capturing non-consecutive subsequences (exact typing)
Default values

Finer basic types
Intervals for integers
Regular expressions for strings (with pattern matching)
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Types

Types are pervasives in

�

Duce:

Static validation

E.g.: does the transformation produce valid XHTML ?

Type-driven semantics
Pattern matching can dispatch on types, overloaded
functions

Type-driven compilation and optimizations
Makes use of static type information to avoid unnecessary
and redundant tests at runtime
Allows a more declarative style without degrading
performance
Extremely useful with tag-coupled XML types (e.g.: DTDs)
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Core type algebra

basic types
Int, String, Atom
(an atom is a constant of the form ‘id where id is an arbitrary
identifier)
(use [Char*] instead of String ? )

types constructors
product types (

��� ,

��� )
record types

� � � =

�� ; � � � ; ��� =
�
�

	

,

� 
 ��� =

�� ; � � � ;

�� =

�
�


 	

functional types

�� ->

���
boolean connectives
empty and universal types Empty and Any
intersection

��� &
���

union

�� |

���

and difference
��� \
��
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Core type algebra

finer basic types
integer interval

�

..

�

(e.g.: 0..9)
string regexp / �� �� �� / (e.g.: /[’a’-’z’]*/)

singleton types
for any scalar or constructed value �, � is itself a type (for
instance ‘nil is the type of empty sequences, and 18 is the
type of the integer 18)

recursive types
e.g.: integer lists:
Ilist where Ilist = (Int, Ilist) | ‘nil
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Set-theoretic interpretation of types

To handle complexity of the type algebra, we need a simple
interpretation of types:

A type is a set of values.

Natural set-theoretic interpretation of boolean connectives
and subtyping relation.

Circularity because of first-class functions (values whose type
is given by the type system, which depends on the subtyping
relation).

Bootstrap method to break this circularity and continue with
the nice semantic definition of subtyping. See:
Frisch, Castagna, and Benzaken.

Semantic Subtyping. LICS’02
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Encoding XML: Sequences

Sequences are encoded using pairs and a terminator ‘nil.
A sequence of values ���� � � �� �� is written

[ �� ... �� ]
and is syntactic sugar for

( �� ,( � � �,( �� , ‘nil) � � �)).

Sequence types are written:
[tyregexp]

where tyregexp is a regular expression built from types.

E.g.: [Int*] , [Int* String+ Int?]
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Encoding XML: XML elements

An XML element
<tag ��� = �� � � � �� = �� > elem seq </tag>

is written in

�

Duce as
<tag �� = �� � � � �� = �� >[elem seq]

which is syntactic sugar for
(‘tag,(

� ��� = �� ; � � � ; ��� = ��
	

,[elem seq]))
(namespaces: use pairs instead of a single atom for tags)

Similarly for types, e.g:

type Ul = <ul>[Li+]

type Li = <li>[Flow*]
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XML syntax

<bib>

<book>

<title>Persistent Object Systems</title>

<year>1994</year>

<author>M. Atkinson</author>

<author>V. Benzaken</author>

<author>D. Maier</author>

</book>

<book>

<title>OOP: a unified foundation</title>

<year>1997</year>

<author>G. Castagna</author>

</book>

</bib>
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Duce syntax

let bib0 =

<bib>[

<book>[

<title>["Persistent Object Systems"]

<year>["1994"]

<author>["M. Atkinson"]

<author>["V. Benzaken"]

<author>["D. Maier"]

]

<book>[

<title>["OOP: a unified foundation"]

<year>["1997"]

<author>["G. Castagna"]

]

];;
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Duce type

type IntStr = /[’0’-’9’]+/;;

type Bib = <bib>[Book*];;

type Book = <book>[Title Year Author+];;

type Year = <year>[IntStr];;

type Title = <title>[String];;

type Author= <author>[String];;
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Loading XML documents

An XML document can be loaded with load xml and checked to
be of the correct type by pattern matching:

let bib0 =

match (load_xml "bib.xml") with

| (x & Bib) -> x

| _ -> error "Wrong type !";;

|- bib0 : Bib
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Pattern Matching

One of

�

Duce’s key features.
match � with � � -> � � | ... | � � -> � �

fun f (

�� -> � � ; ...) � � -> � � | ... | � � -> � �

A pattern may either match or reject a value. When it matches:

Binds its capture variables to the corresponding parts of the
value and the computation can continue with the body of the
branch.

Otherwise: Control is passed to the next branch.

ML-like flavor, but much more powerful

Express in a single pattern a computation that dynamically
checks both the structure and the type of the
matched values, and extracts deep information.
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Core pattern algebra

� � � � � capture


 �

type constraint


 � � & � � conjunction


 � � | � � alternative




(� � , � � ) pair


 � �

= � 	

record




( � := �) constant

Plus:

Recursive patterns

Syntactic sugar for sequences (regular expressions patterns)

String regular expression patterns
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Matching

� � � = match the value � against the pattern � .

The result is either

�

(failure) or a substitution Var

� � � � Values.

if
if

&
| if
| if

if is not a pair

Duce Semantics:
| if
| if
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 � 
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� � � � � � �� � � � � � � � � �
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� � � � � 
� �� �� � � � � � � � 
 � 
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� �� �� � � � � � � � 
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�
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� � ��� � � � � � � � � � � |� � � � � � �
� � � � �
	

if � � � �



�

�

� � ��� � � � � � � � � � � |� � � � � � �
� � � � �
	

if � � � � �

�
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Sequence capture variable

Example:

[ ((x :: Int Int) (y :: String)?)* ]

is syntactic sugar for the recursive pattern:

p where p = (x & Int, q) | (x & y & ‘nil)

and q = (x & Int, r)

and r = (y & String, p) | p

If a variable � appears on both sides of a pair pattern
(� � ,� � ), the results from the two patterns are paired
together. E.g:

match (1,(2,3)) with (x,(_,x)) -> x

returns
(1,3)
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Patterns

Powerful captures:
p where ((x & Int),p) | ( ,p) | (x:=‘nil)

When a list

�

is matched against p, then x binds the list of all
integers occuring in

�

.

Precise typing:
= type environment for the variables in p when matching

a value in

[Int String Int] [Int Int]

[Int|String] [Int?]
[Int* String Int] [Int+]
[Int+ String Int] [Int+ Int]
[(0..10)+ String Int] [(0..10)+ Int]
[(Int String)+] [Int+]
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Typing rule for Pattern matching

Let

�

denote the sequence of branches � � -> � � | � � � |

� � -> � � .

The rule below derives the typing judgments
� � � � � � �,

whose intended meaning is: matching a value of type

�

against the sequence of branches

�

always succeeds and
every possible result is of type �.

� � � � � � �
� � �

| ... |
� � � � �
� � �

��� �
� � � 	 � � � � �
� � � � 	

...
	 � � � � ��
 �
� � � �

&

� � � � � � � �

�
�

� ��� � � � � � � � � � � if

� � 
�
 Empty

� � � Empty if

� � 
 Empty

� � � � | ...| � �

� � � � � � �
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Pattern type inference

The real work is done by

� � � � � � �

and

� � � � �

.

They are defined as the least solution of some set of
equations.

� � � � � � �

� Any

� � � � � |� �
� � �

�

� � � � �
� � �

|

� � � � �
� � �

� � � � � � � � � � � � � � &� �
� � �

�

� � � � �
� � �

&

� � � � �
� � �

� � �

( �:= �)

� � �
� Any

� � �

(� � ,� � )

� � �
� (

� � � � �
� � �

,

� � � � �
� � �

)

� � � � � � � �

� �

� � � � � � |� �
� � � � �

�

� � �
&

� � � � �
� � � � � � �
� � � �

|

� � � 	 � � � � �
� � � � � � �
� � � �

...
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List comprehension

map

�

with � � -> � � | ... | � � -> � �
transform

�

with � � -> � � | ... | � � -> � �

map applies some transformation to each element of a
sequence.
(implicit default branch: x -> x)

Very precise typing. E.g:
l:[(Int String)*] |- map l with Int -> ‘A | String -> ‘B : [(‘A ‘B)*]

transform is a variant where each branch of the pattern is
supposed to return a (possibly empty) sequence, and all the
returned sequences, for each element in the source
sequence, are concatenated together.
(implicit default branch: x -> [])
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Functions

The general form for a function is:
fun

�

(

�� -> � � ; ...)

� � -> � �

| ...
| � � -> � �

Functions are first-class values.

�

is optional (used for recursive functions)

The

� � -> � � are constraints to be checked by the type
checker.

All top-level function declarations (let fun ...) are
mutually recursive.
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Simple functions

fun add5 ( 0..100 -> 0..100 ) x -> x + 5;;

is rejected with:

Type error.

This expression has type 5..105

Expected type: 0..100

Residual type: 101..105

Constraint not satisfied: 0..100 -> 0..100
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Simple functions

fun wrap (0..100 -> 0..10)
| x & 0..10 -> x
| x -> wrap (x - 10);;

type Expr =
(‘add | ‘mul | ‘sub | ‘div) * Expr * Expr

| Int;;

let fun eval ( Expr -> Int )
| (‘add,x,y) -> eval x + eval y
| (‘mul,x,y) -> eval x * eval y
| (‘sub,x,y) -> eval x - eval y
| (‘div,x,y) -> eval x / eval y
| n -> n;; (* here n has type Int *)
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Simple functions

let fun book_title ( Book -> String )

<book>[ <title>[t]; _ ] -> t;;

let fun book_author ( Book -> [String+])

<book>l -> transform l with <author>[a] -> [a];;

l, t and a are capture variables
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Simple functions

type Flat_bib = [(Title Year Author+)*];;

let fun unflatten ( Flat_bib -> [Book*])

| [ b::(Title Year Author+); r ] ->

(<book>b, unflatten r)

| [] -> [];;

b is a sequence capture variable
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Simple functions

type Flat_bib = [(Title Year Author+)*];;

type TitleYear = [(Title Year)*];;

let fun remove_authors1 (Flat_bib -> TitleYear)

[ (Author | x::Any)* ] -> x;;

let fun remove_authors2 (Flat_bib -> TitleYear)

[ (x::(Title Year) | _)* ] -> x;;

let fun remove_authors3 (Flat_bib -> TitleYear)

[ ((x::Title) | (x::Year) | _)* ] -> x;;

All the matched subsequences for a sequence capture
variable are concatenated together.
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Overloading

let fun add( (Int,Int) -> Int; (String,String) -> String )

| (x & Int, y) -> x + y

| (x & String, y ) -> x ˆ y;;

type Person = <person gender=("M"|"F")>[...];;

let fun title (Book -> String; Person -> ‘mister | ‘miss)

| <book>[<author>[a]; _] -> a

| <person gender="M">_ -> ‘mister

| <person gender="F">_ -> ‘miss;;
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Overloading

type Movie = <movie>[Title <producer>[String]];;

type Film = <film>[Titre <producteur>[String]];

type Livre = <livre>[Titre Annee Auteur+];;

type Titre = <titre>[String];;

...

let fun to_french (String -> String; Book -> Livre; Movie -> Film;

Title -> Titre; ...)

<(t)>x ->

let t’ = match t with

| ‘book -> ‘livre | ‘movie -> ‘film

| ‘title -> ‘titre | ‘year -> ‘annee

| ‘author -> ‘auteur | ‘producer -> ‘producteur

| y -> y

in

<(t’)>(map x with e -> to_french e);;

CDuce - PLANX-2002 – p.32/53



Overloading: serious example

type Person = FPerson | MPerson;;
type FPerson = <person gender ="F">[ Name Children ];;
type MPerson = <person gender ="M">[ Name Children ];;
type Children = <children>[Person*];;
type Name = <name>[String];;

type Man = <man>[ Name Sons Daughters ];;
type Woman = <woman>[ Name Sons Daughters ];;
type Sons = <sons>[ Man* ];;
type Daughters = <daughters>[ Woman* ];;

let fun sort (MPerson -> Man ; FPerson -> Woman)
<person gender=gen>[ n <children>[ (mc::MPerson | fc::FPerson)* ] ] ->
let tag = match gen with "M" -> ‘man | "F" -> ‘woman in
let s = map mc with x -> sort x in
let d = map fc with x -> sort x in
<(tag)>[ n <sons>s <daughters>d ];;

Although sort:Person -> Man | Woman, the declaration
fun sort (Person -> Man | Woman)
wouldn’t type-check (fails for the recursive calls).
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<(tag)>[ n <sons>s <daughters>d ];;

Although sort:Person -> Man | Woman, the declaration
fun sort (Person -> Man | Woman)
wouldn’t type-check (fails for the recursive calls).

CDuce - PLANX-2002 – p.33/53



Overloading: serious example

type Person = FPerson | MPerson;;
type FPerson = <person gender ="F">[ Name Children ];;
type MPerson = <person gender ="M">[ Name Children ];;
type Children = <children>[Person*];;
type Name = <name>[String];;

type Man = <man>[ Name Sons Daughters ];;
type Woman = <woman>[ Name Sons Daughters ];;
type Sons = <sons>[ Man* ];;
type Daughters = <daughters>[ Woman* ];;

let fun sort (MPerson -> Man ; FPerson -> Woman)
<person gender=gen>[ n <children>[ (mc::MPerson | fc::FPerson)* ] ] ->
let tag = match gen with "M" -> ‘man | "F" -> ‘woman in
let s = map mc with x -> sort x in
let d = map fc with x -> sort x in
<(tag)>[ n <sons>s <daughters>d ];;

Although sort:Person -> Man | Woman, the declaration
fun sort (Person -> Man | Woman)
wouldn’t type-check (fails for the recursive calls).

CDuce - PLANX-2002 – p.33/53



Overloading: serious example

type Person = FPerson | MPerson;;
type FPerson = <person gender ="F">[ Name Children ];;
type MPerson = <person gender ="M">[ Name Children ];;
type Children = <children>[Person*];;
type Name = <name>[String];;

type Man = <man>[ Name Sons Daughters ];;
type Woman = <woman>[ Name Sons Daughters ];;
type Sons = <sons>[ Man* ];;
type Daughters = <daughters>[ Woman* ];;

let fun sort (MPerson -> Man ; FPerson -> Woman)
<person gender=gen>[ n <children>[ (mc::MPerson | fc::FPerson)* ] ] ->
let tag = match gen with "M" -> ‘man | "F" -> ‘woman in
let s = map mc with x -> sort x in
let d = map fc with x -> sort x in
<(tag)>[ n <sons>s <daughters>d ];;

Although sort:Person -> Man | Woman, the declaration
fun sort (Person -> Man | Woman)
wouldn’t type-check (fails for the recursive calls).

CDuce - PLANX-2002 – p.33/53



Overloading: serious example

type Person = FPerson | MPerson;;
type FPerson = <person gender ="F">[ Name Children ];;
type MPerson = <person gender ="M">[ Name Children ];;
type Children = <children>[Person*];;
type Name = <name>[String];;

type Man = <man>[ Name Sons Daughters ];;
type Woman = <woman>[ Name Sons Daughters ];;
type Sons = <sons>[ Man* ];;
type Daughters = <daughters>[ Woman* ];;

let fun sort (MPerson -> Man ; FPerson -> Woman)
<person gender=gen>[ n <children>[ (mc::MPerson | fc::FPerson)* ] ] ->
let tag = match gen with "M" -> ‘man | "F" -> ‘woman in
let s = map mc with x -> sort x in
let d = map fc with x -> sort x in
<(tag)>[ n <sons>s <daughters>d ];;

Although sort:Person -> Man | Woman, the declaration
fun sort (Person -> Man | Woman)
wouldn’t type-check (fails for the recursive calls).

CDuce - PLANX-2002 – p.33/53



Overloading: serious example

type Person = FPerson | MPerson;;
type FPerson = <person gender ="F">[ Name Children ];;
type MPerson = <person gender ="M">[ Name Children ];;
type Children = <children>[Person*];;
type Name = <name>[String];;

type Man = <man>[ Name Sons Daughters ];;
type Woman = <woman>[ Name Sons Daughters ];;
type Sons = <sons>[ Man* ];;
type Daughters = <daughters>[ Woman* ];;

let fun sort (MPerson -> Man ; FPerson -> Woman)
<person gender=gen>[ n <children>[ (mc::MPerson | fc::FPerson)* ] ] ->
let tag = match gen with "M" -> ‘man | "F" -> ‘woman in
let s = map mc with x -> sort x in
let d = map fc with x -> sort x in
<(tag)>[ n <sons>s <daughters>d ];;

Although sort:Person -> Man | Woman, the declaration
fun sort (Person -> Man | Woman)
wouldn’t type-check (fails for the recursive calls).

CDuce - PLANX-2002 – p.33/53



Overloading: serious example

type Person = FPerson | MPerson;;
type FPerson = <person gender ="F">[ Name Children ];;
type MPerson = <person gender ="M">[ Name Children ];;
type Children = <children>[Person*];;
type Name = <name>[String];;

type Man = <man>[ Name Sons Daughters ];;
type Woman = <woman>[ Name Sons Daughters ];;
type Sons = <sons>[ Man* ];;
type Daughters = <daughters>[ Woman* ];;

let fun sort (MPerson -> Man ; FPerson -> Woman)
<person gender=gen>[ n <children>[ (mc::MPerson | fc::FPerson)* ] ] ->
let tag = match gen with "M" -> ‘man | "F" -> ‘woman in
let s = map mc with x -> sort x in
let d = map fc with x -> sort x in
<(tag)>[ n <sons>s <daughters>d ];;

Although sort:Person -> Man | Woman, the declaration
fun sort (Person -> Man | Woman)
wouldn’t type-check (fails for the recursive calls).

CDuce - PLANX-2002 – p.33/53



Overloading: serious example

type Person = FPerson | MPerson;;
type FPerson = <person gender ="F">[ Name Children ];;
type MPerson = <person gender ="M">[ Name Children ];;
type Children = <children>[Person*];;
type Name = <name>[String];;

type Man = <man>[ Name Sons Daughters ];;
type Woman = <woman>[ Name Sons Daughters ];;
type Sons = <sons>[ Man* ];;
type Daughters = <daughters>[ Woman* ];;

let fun sort (MPerson -> Man ; FPerson -> Woman)
<person gender=gen>[ n <children>[ (mc::MPerson | fc::FPerson)*] ] ->
let tag = match gen with "M" -> ‘man | "F" -> ‘woman in
let s = map mc with x -> sort x in
let d = map fc with x -> sort x in
<(tag)>[ n <sons>s <daughters>d ];;

Although sort:Person -> Man | Woman, the declaration
fun sort (Person -> Man | Woman)
wouldn’t type-check (fails for the recursive calls).

CDuce - PLANX-2002 – p.33/53



Overloading: serious example

type Person = FPerson | MPerson;;
type FPerson = <person gender ="F">[ Name Children ];;
type MPerson = <person gender ="M">[ Name Children ];;
type Children = <children>[Person*];;
type Name = <name>[String];;

type Man = <man>[ Name Sons Daughters ];;
type Woman = <woman>[ Name Sons Daughters ];;
type Sons = <sons>[ Man* ];;
type Daughters = <daughters>[ Woman* ];;

let fun sort (MPerson -> Man ; FPerson -> Woman)
<person gender=gen>[ n <children>[ (mc::MPerson | fc::FPerson)*] ] ->
let tag = match gen with "M" -> ‘man | "F" -> ‘woman in
let s = map mc with x -> sort x in
let d = map fc with x -> sort x in
<(tag)>[ n <sons>s <daughters>d ];;

Although sort:Person -> Man | Woman, the declaration
fun sort (Person -> Man | Woman)
wouldn’t type-check (fails for the recursive calls).

CDuce - PLANX-2002 – p.33/53



Overloading: serious example

type Person = FPerson | MPerson;;
type FPerson = <person gender ="F">[ Name Children ];;
type MPerson = <person gender ="M">[ Name Children ];;
type Children = <children>[Person*];;
type Name = <name>[String];;

type Man = <man>[ Name Sons Daughters ];;
type Woman = <woman>[ Name Sons Daughters ];;
type Sons = <sons>[ Man* ];;
type Daughters = <daughters>[ Woman* ];;

let fun sort (MPerson -> Man ; FPerson -> Woman)
<person gender=gen>[ n <children>[ (mc::MPerson | fc::FPerson)*] ] ->
let tag = match gen with "M" -> ‘man | "F" -> ‘woman in
let s = map mc with x -> sort x in mc:[MPerson*]

�

s:[Man*]
let d = map fc with x -> sort x in fc:[FPerson*]

�

d:[Woman*]
<(tag)>[ n <sons>s <daughters>d ];;

Although sort:Person -> Man | Woman, the declaration
fun sort (Person -> Man | Woman)
wouldn’t type-check (fails for the recursive calls).

CDuce - PLANX-2002 – p.33/53



Overloading: serious example

type Person = FPerson | MPerson;;
type FPerson = <person gender ="F">[ Name Children ];;
type MPerson = <person gender ="M">[ Name Children ];;
type Children = <children>[Person*];;
type Name = <name>[String];;

type Man = <man>[ Name Sons Daughters ];;
type Woman = <woman>[ Name Sons Daughters ];;
type Sons = <sons>[ Man* ];;
type Daughters = <daughters>[ Woman* ];;

let fun sort (MPerson -> Man ; FPerson -> Woman)
<person gender=gen>[ n <children>[ (mc::MPerson | fc::FPerson)*] ] ->
let tag = match gen with "M" -> ‘man | "F" -> ‘woman in
let s = map mc with x -> sort x in
let d = map fc with x -> sort x in
<(tag)>[ n <sons>s <daughters>d ];;

Although sort:Person -> Man | Woman, the declaration
fun sort (Person -> Man | Woman)
wouldn’t type-check (fails for the recursive calls).

CDuce - PLANX-2002 – p.33/53



Overloading: serious example

type Person = FPerson | MPerson;;
type FPerson = <person gender ="F">[ Name Children ];;
type MPerson = <person gender ="M">[ Name Children ];;
type Children = <children>[Person*];;
type Name = <name>[String];;

type Man = <man>[ Name Sons Daughters ];;
type Woman = <woman>[ Name Sons Daughters ];;
type Sons = <sons>[ Man* ];;
type Daughters = <daughters>[ Woman* ];;

let fun sort (MPerson -> Man ; FPerson -> Woman)
<person gender=gen>[ n <children>[ (mc::MPerson | fc::FPerson)*] ] ->
let tag = match gen with "M" -> ‘man | "F" -> ‘woman in
let s = map mc with x -> sort x in
let d = map fc with x -> sort x in
<(tag)>[ n <sons>s <daughters>d ];;

Although sort:Person -> Man | Woman, the declaration
fun sort (Person -> Man | Woman)
wouldn’t type-check (fails for the recursive calls).

CDuce - PLANX-2002 – p.33/53



Overloading

Static overloading: same name for a similar action in different
types.

Dynamic dispatch: reminiscent of OO programming (without
encapsulation ;) )

Separation of overloading in function interface and in
implementation (pattern matching) allows code sharing
between different "classes".
Combine advantage of pattern-matching (that can look
deep inside the value to be dispatched) and multi-methods
(dispatch according to the run-time type of several
arguments)

With higher-order: pass a single overloaded function
argument to a function instead of several functions.

(To be investigated) Incremental programming
to follow the evolution of schemas. CDuce - PLANX-2002 – p.34/53



Higher-order

type Bool = ‘true | ‘false;;

let fun present_bib ( (Bib, (Book -> Bool)) -> Html )

(bib, highlight) ->

transform bib with

b & <book>[<title>[t]; _] ->

match (highlight b) with

| ‘true -> [ <em>[t] <br>[] ]

| ‘false -> [ t <br>[] ];;

...

present_bib

(bib0, fun (Book -> Bool)

| <book>[<title>[/.* "Object" .*/]; _] -> ‘true

| _ -> ‘false);;

);;

...

present_bib

(bib0, fun (Book -> Bool)

<book>[_* <year>[y] _*] -> (int y >= 2000));;
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First-class functions

Other examples in the field of XML processing:

Parametrize the behavior of complex transformations with
basic transformations over subparts of the document.

Dynamic template system (compute or extract from a
database a “presentation function”).

Compile a user-provided function at runtime and check its
type.

let present =

match eval (cgi_arg "present") with

| ‘compile_error -> error "invalid CDuce code"

| ‘runtime_error -> error "error when evaluating code"

| (‘value, f & (Book -> Html)) -> f

| _ -> error "invalid type";;

|- present : Book -> Html
CDuce - PLANX-2002 – p.36/53



Compiling pattern matching

Given � patterns � �� � � �� � � , produce code to select the
branch of a pattern matching � � ->� � | ... | � � ->� � .

The type system gives a static type

�

for the matched
expression and type safety ensures that the matched value
has type

�

. Use this information.

Example:
fun (<c>[A+|B+] -> Int)

<c>[A+] -> 0
| <c>[B+] -> 1;;

Naive compilation schema: the argument may be
run through completely several times.
How fast if A=<a>[...] and B=<b>[...] !!

fun (<c>[A+|B+] -> Int) < >[<a> *] -> 0

| -> 1
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Compiling pattern matching

In general, a naive approach to compiling pattern matching
may yield multiple runs and backtracking through the
matched value.

Without capture variable, this is the problem of recognizing
regular (binary) tree languages.

Idea: deterministic bottom-up tree automata can eliminate
backtracking.

Determinization creates huge and intractable automata
(uniform computation, disregarding the current position in the
tree)
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Compiling pattern matching

Idea: propagate a “state” from the root and from the left
(hybrid top-down and bottom-up automata).

When matching a value

� ���� ��� �

, perform some computation of

�� and, according to the result, perform another computation
on �� .

By using static type information, it is possible to avoid
checking whole parts of the matched value.

E.g.: to decide whether � �
� � �� ��� �

has type

� ���

���
�

when it is
known to have type

� ����

���
�

|
�

� �� � �
�

(with

�� & � � 
 Empty), one
just has to look at �� .

Vague description of the algorithm: put patterns in some kind
of disjunctive normal form.
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Streaming

Streaming processing can be achieved by giving
�

Duce a
lazy semantics.

To make this feasible, pattern matching must not inspect
parts of the value which are not needed.
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Extensions for queries

For XML, the boundary between programming languages,
transformation languages and query languages/algebras is
not easy to draw.

�

Duce was designed as a programming language.

A small set of extra constructions (or syntactic sugar) can
endow it with query-like facilities: projection, selection, join.

We can describe encodings for these constructions, but we
want to give the compiler some freedom and a large latitude
in query optimization.

Core

�

Duce contribution to this potential query language is:
static typing + efficient compilation schema.
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Queries: Projection

As an example, we introduce projection.

E.g.: projection can be defined from the transform
construction.

If � is a

�

Duce expression representing a sequence of
elements and

�

is a type, � /

�

is syntactic sugar for:

transform � with <_>c ->

transform c with (x &

�

) -> [x]

Examples:

[addr book]/<addr kind="home">/<town>

[bib]/<book>[Title Year Author Author]/<title>
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Equivalences

�

Duce compiler could take profit of equivalences:

transform (transform e with p1 -> e1) with p2 ->

e2

�

transform e with p1 -> transform e1 with p2 -> e2
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Queries: joins

To implement joins, we introduce a cartesian product
operator.

if � � , . . . � � are sequences, prod( � � , � � ,..., � � ) evaluates to
a sequence containing all the ( � � ,..., �� ) where � � appears
in � � .

We let the order of this sequence unspecified to allow
optimizations.

Example: let � � = [ 1 2 ] and � � = [ "A" "B" ], then
the expression prod( � � , � � ) evaluates to some permutation
of [ (1,"A") (1,"B") (2,"A") (2,"B") ].

CDuce - PLANX-2002 – p.44/53



Queries

The typing rule for prod is the following:

� � � � �[

�� *]

� � � � �[

�� *] � � �

� � � � �[
�
� *]� �

prod(� � , ..., � � ) � [(

�� ,

�� ,...,
�
� )*]

We restrict the � � ’s to be homogeneous sequences (i.e,
sequences whose elements are all of the same type)

which yields the product to be an homogeneous sequence,
as well.
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Select from where

A select construction can then be easily defined since

select � from � � in � � ,..., � � in � � where � �

can be defined to be the same as:
transform prod(� � ,...,� � ) with
( � � ,..., � � ) -> if � �

then � else []
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Select from where

join between two documents bib0 and rev0 of types Bib and
Review respectively.

type Review =<reviews>[BibRev*];;

type BibRev = <book>[<title>[String]

<review>[String]];;

let rev0 = <reviews>[

<book>[

<title>["Persistent Object Systems"]

<review>["Good topic"]]

<book>[

<title>["Les illusions perdues"]

<review>["A promising writer"]]];;
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Select from where

select <bookr>([b]/<title> @ [b]/<author> @ [r]/<review>)

from b in [bib0]/<book> , r in [rev0]/<book>

where [b]/<title> = [r]/<title>

yielding the following result:

[

<bookr>[

<title>["Persistent Object Systems"]

<author>["M. Atkinson"]

<author>["V. Benzaken"]

<author>["D. Maier"]

<review>["Good topic"]]

<bookr>[

<title>...]

]
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Select from where

Need to access to the content of an element when it is a
sequence of just one element.

� .<tag>

select

<book review=r.<review>>

([b]/<title>@

[b]/<book>@

[<price>["unknown"]])

from b in [bib0]/<book> , r in [rev0]/<book>

where b.<year>="2000" and (b.<title> = r.<title>)
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Typing rule

The type system authorizes to access the content of an
element only if the element occurs exactly once and it
contains a sequence of length 1, as stated by:

� � � �[

�
� � �<t �>

�

* <t �>[ �]

�
� � �<t �>

�

*]

� � � .<t �> � �

( � is an optional attribute specification)
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Typing rule

easily deduced from the encoding of � .<t �>:

match � with [

�
� � �<t �>

�

* <t �>[x]

�
� � �<t �>

�
*] -> x.

This construct corresponds to the XSLT element value-of
where,

(/<a>/<b>/<c>).<c>

would be written as

<xsl:value-of select=”/a/b/c”>.
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Implementation

Current prototype at http://www.cduce.org

A lot of non-trivial implementation issues. E.g.:
Subtyping algorithm: subtle caching mechanisms,
short-cuts, . . .
Maximal sharing and unique representation of recursive
types.
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Open issues

Polymorphism and inference (Alain and Giuseppe)

Language oriented security (Giuseppe, Marwan, Véronique)

Formal study of the query sub-part and potential
optimisations (Véronique and whoever interested)

Dependent types (Alain, Giuseppe)

Module system and incremental programming (Alain,
Giuseppe)

Interfacing with other languages

Interfacing with native XML databases (indexes, in-place
modifications)
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