XPi: a typed process calculus for XML messaging

Lucia Acciai - Michele Boreale

D.S.I. - University of Firenze

XPi: a typed process calculus for XML messaging - p.1/26

Message passing

- The design of globally distributed application (WS, B2B) is centered around asynchronous message passing in the form of XML documents.
- The choise of message passing is due to:
 - its conceptual simplicity;
 - minimal infrastructural requirements;
 - neutrality with respect to platforms and back-ends of services.

Example: WS

Example: WS

Example: WS

Languages for WS

- There are several languages and standard for WS (WSDL, BPEL4WS, ...), some of them draw their inspiration from the π-calculus.
- Among these languages we can recognize two extreme:
 - WSDL: which says very little about behaviour;
 - BPEL4WS, BizTalk, ...: which are hardly amenable to formal analisys.

WS and process calculi

We propose an asynchronous version of the π -calculus where:

- names represent addresses on the net;
- messages passed around are XML documents;
- we generalize ordinary inputs with filtering;
- static (dynamic) typing ensures the run time safety property.

XPi = XML + π -Calculus

XPi is a process calculus based on the asynchronous π -Calculus where:

- messages are represented as nested and tagged lists;
- we generalize the ordinary input actions with queries, which are open messages with no abstractions;
- a type system and a type inference system are provided;
- a notion of barbed equivalence allows to validate interesting equations.

Example: messages

<addrbook>

<person>

<name>John Smith</name>

<tel>12345</tel>

<emailaddrs>

<email>john@smith</email>

<email>smith@john</email>

</emailaddrs>

</person>

<person>

<name>Eric Brown</name>

<tel>678910</tel>

<emailaddrs></emailaddrs>

</person>

</addrbook>

Example: messages

<addrbook> <person> <name>John Smith</name> <tel>12345</tel> <emailaddrs> <email>john@smith</email> <email>smith@john</email> </emailaddrs> </person> <person> <name>Eric Brown</name> <tel>678910</tel> <emailaddrs></emailaddrs> </person> </addrbook>

addrbook(person(name("John Smith"), tel(12345), emailaddrs(email("john@smith"), email("smith@john")), person(name("Eric Brown"), tel(678910), emailaddrs([])) 1)

Example: queries

An input process $a.(Q_{\tilde{x}})P$ is a channel a followed by an abstraction $(Q_{\tilde{x}})P$.

The following query extracts the content of the tag name from the two person elements:

$$Q_{\{x,y\}} = (addrbook [person [name(x) , __], __], person[name(y) , __])_{\{x,y\}}$$

Syntax of messages

Message	M ::=	v	Value
		$\mid x$	Var
		$\mid f(M)$	Tag
		$\mid LM$	List
		$\mid A$	Abstraction
Query	Q ::=	•••	
List	LM ::=	[]	Empty list
		$\mid x$	Var
		$\mid M \cdot LM$	Concatenation
Abstraction	A ::=	$(Q_{\tilde{x}})P$	Query and Continuation
		x	Var

Example: processes

Consider the query $Q_{\{x,y\}}$ previously defined, and consider the following query:

$$Q'_{\{x\}} = (addrbook[person[name(x), _]))_{\{x\}}$$

We can define the following process:

$$P = (\overline{a} \langle M \rangle | (a \cdot (Q'_{\{x\}}) P_1 + a \cdot (Q_{\{x,y\}}) P_2)) | \text{else } P_3$$

Syntax of processes

ProcessP ::= $\overline{u}\langle M \rangle$ Output $| \sum_{i \in I} a_i . A_i |$ Guarded Summation| P else R |Else $| P_1 | P_2 |$ Parallel| !P |Replication $| (\nu a) P |$ Restriction

Example: derived constructs

Application:

$$(Q_{\tilde{x}})P \bullet M = (\nu c)(\overline{c}\langle M \rangle | c.(Q_{\tilde{x}})P)$$

Case:

if M of $Q_{\tilde{x}}$ then P_1 else $P_2 = ((Q_{\tilde{x}})P_1 \bullet M)$ else P_2 **Decomposition:** if M of $Q_{\tilde{x}} ++ Q'_{\tilde{y}}$ then P_1 else $P_2 = R([[], M])$ where: $R([l, x]) = \text{if } x \text{ of } (y \cdot w)_{\{y,w\}}$ then (if l@y of $Q_{\tilde{x}}$ then (if w of $Q'_{\tilde{y}}$ then P_1 else R([l@y, w]))else R([l@y, w]))

Example: a streaming audio server

- Consider a web service WS that offers two different services:
 - an audio streaming service, offered at channel stream;
 - a download service offered at *download*.
- Clients that request the first service must specify a channel for the streaming and its capacity.
- Clients that request download must specify only a channel.

Example: a streaming audio server

The process WS may be the following:

 $WS \stackrel{\triangle}{=} ! (stream.(req_stream[bandwidth("low"), channel(x)]_{\{x\}}) \\ \overline{x} \langle v_{low} \rangle$

+ stream.(req_stream[bandwidth("high"),channel(y)]_{y}) $\overline{y}\langle v_{high} \rangle$

+ $download.(req_down(z)_{\{z\}})\overline{z}\langle Player\rangle).$

The abstraction Player: $Player \triangleq (req_stream[bandwidth(x), channel(y)]_{\{x,y\}})$ (Case x of "low" $\Rightarrow \overline{y}\langle v_{low} \rangle$ "high" $\Rightarrow \overline{y}\langle v_{high} \rangle$).

Reductions semantic

(COM)
$$\frac{j \in I \quad a_j = a, \quad A_j = (Q_{\tilde{x}})P, \quad \mathsf{match}(M, Q, \sigma)}{\overline{a} \langle M \rangle | \sum_{i \in I} a_i . A_i \to P\sigma}$$

(STRUCT)
$$\frac{P \equiv P', \quad P' \to R', \quad R' \equiv R}{P \to R}$$

(CTX)
$$\frac{P \to P'}{(\nu \tilde{a})(P|R) \to (\nu \tilde{a})(P'|R)}$$

(ELSE₁) $\frac{P \to P'}{P \operatorname{else} R \to P'}$

 $(ELSE_2)$

$$\frac{P \not\rightarrow}{P \operatorname{else} R \rightarrow R}$$

Reductions semantic

(COM)
$$\underline{j \in I} \quad a_j = a, \quad A_j = (Q_{\tilde{x}})P, \quad \operatorname{match}(M, Q, \sigma)$$

 $\overline{a}\langle M \rangle \mid \sum_{i \in I} a_i A_i \to P\sigma$

Type Checking

We define a typed calculus with annotated queries:

 $A_i = ((Q_i)_{\tilde{x}_i} : \Gamma_{Q_i}) P_i$, where $dom(\Gamma_{Q_i}) = \tilde{x}_i$.

- We define a notion of types.
- We define a subtyping relation;
- To every channel we associate a capacity, that is the type of the messages that the channel can transport; a : ch(τ) indicates that a channel a can transports messages of type τ.

Types

Type $\tau ::=$ Basic type (bt $\in \mathcal{BT}$) bt Тор Т Bottom Т $| f(\tau)$ Tag $(f \in \mathcal{F})$ List LT $| \tau + \tau$ Union $|(\tau)$ Abs Abstraction **List** LT ::= [] *Empty* $| * \tau$ Star

 $\mid \tau \cdot LT$ Concatenation

Subtyping

The subtyping relation is defined syntactically:

- subtyping is contravariant on channel: for every type τ $ch(\mathbf{L}) > ch(\tau)$; that is $ch(\mathbf{L})$ is the type of every channel;
- consider the type: $\tau = f[g[T], T]$; the channel that can transport documents of some type $\tau' < \tau$ is ch(f[g[L], L]).

Type Safety

The type system guarantees that well typed processes satisfy a safety property:

Safety: Let *P* be an annotated closed process. *P* is *safe* if and only if for each name $a \in ch(\tau)$:

- 1. whenever $P \equiv (\nu \tilde{h})(\overline{a} \langle M \rangle | R)$ then $M : \tau$;
- 2. suppose τ is consistent. Whenever $P \equiv (\nu \tilde{h})(\sum_{i \in I} a_i.((Q_i)_{\tilde{x}_i})P_i | R)$ and $a_i = a$ then Q_i is τ -consistent.

Type Safety

The type system guarantees that well typed processes satisfy a safety property:

Safety: Let *P* be an annotated closed process. *P* is *safe* if and only if for each name $a \in ch(\tau)$:

- 1. whenever $P \equiv (\nu \tilde{h})(\overline{a}\langle M \rangle | R)$ then $M : \tau$;
- 2. suppose τ is consistent. Whenever $P \equiv (\nu \tilde{h})(\sum_{i \in I} a_i.((Q_i)_{\tilde{x}_i})P_i | R) \text{ and } a_i = a \text{ then } Q_i \text{ is } \tau\text{-consistent.}$

That is:

- services receiving only requests they can understand;
- services offered at a given channel will comply with the type declared for that channel.

Conclusions

XPi is a core calculus for XML messaging, featuring:

- asynchronous communications;
- ML-like pattern matching;
- name and code mobility;
- integration of static typing;
- integration of a type inference system;
- the introduction of dynamic abstractions;
- also we have defined a notion of barbed equivalence.

Related works

- XDuce (Hosoya, Pierce), CDuce (Castagna et al.): typed (functional) languages for XML document processing;
- **TQL (Cardelli, Ghelli):** logic and query language for XML, based on a spatial logic for the Ambient calculus;
- π -Duce (Meredith et al.): language that features asynchronous communication and code/name mobility;
- Semantic subtyping for the π-calculus (Castagna, De Nicola, Varracca): language that is the π-calculus enriched with a rich form of semantic subtyping and pattern matching.