o N

XPI: atyped process calculusfor
XML messaging

Lucia Accilal- Michele Boreale

D.S.1. - University of Firenze

M essage passing

o N

The design of globally distributed application (WS, B2B)
IS centered around asynchronous message passing in
the form of XML documents.

The choise of message passing Is due to:
s Its conceptual simplicity;
s minimal infrastructural requirements;

s neutrality with respect to platforms and back-ends of
services.

o |

XPi: a typed process calculus for XML messaging — p.2/26

Example: WS
-

request W1]

[CLIENT

-

request

[CLIENT

Example: WS

)

<
WS1 >(WS2]
Y, _
collaboration
\/ p \/
WS4 >L WS3 J
J

Example: WS
-

N
WS1 >(WS2]
request . J<

N
/N

[CLIENT response collaboration
A4 A4

=S

L anguages for WS
B -

#® There are several languages and standard for WS
(WSDL, BPEL4WS, ...), some of them draw their

iInspiration from the r-calculus.
Among these languages we can recognize two extreme:
s WSDL: which says very little about behaviour;

s BPEL4WS, BizTalk, ...: which are hardly amenable
to formal analisys.

o |

XPi: a typed process calculus for XML messaging — p.6/26

-

WS and process calcull

We propose an asynchronous version of the r-calculus
where:

K

9o
K
9

names represent addresses on the net;
messages passed around are XML documents;
we generalize ordinary inputs with filtering;

static (dynamic) typing ensures the run time safety
property.

|

XPi: a typed process calculus for XML messaging — p.7/26

XPi = XML + m-Calculus

o N

XP1 Is a process calculus based on the asynchronous
m-Calculus where:

#® messages are represented as nested and tagged lists;

we generalize the ordinary input actions with queries,
which are open messages with no abstractions;

atype system and a type inference system are
provided,;

a notion of barbed equivalence allows to validate
Interesting equations.

o |

XPi: a typed process calculus for XML messaging — p.8/26

Example: messages
T__<addrbook> __W

<per son>
<name>John Sm t h</ nane>
<t el >12345</tel >
<emai | addr s>
<emai | > ohn@m t h</emai | >
<emai | >sm t h@ ohn</ enmai | >
</ emai | addr s>
</ person>
<per son>
<nane>Eri c Brown</ nane>
<tel >678910</tel >
<emai | addr s></ enui | addr s>
</ person>

L</ addr book> J

XPi: a typed process calculus for XML messaging — p.9/26

-

Example: messages

<addr book>

<per son>
<name>John Sm t h</ nane>
<tel >12345</tel >
<emai | addr s>
<emal | > ohn@m t h</emai | >
<emal | >sm t h@ ohn</enmai | >
</ emai | addr s>
</ person>
<per son>
<nane>Eri c Brown</ nane>
<tel >678910</tel >
<emai | addr s></ enui | addr s>
</ person>

L</ addr book>

addr book([

person(|

nane(“John Smth”),

tel (12345),

emai | addrs(|
emai | (“ ohn@m th”),
emai | (“sm th@ ohn”)
),

D,

person(|
name(“Eri ¢ Brown”),
tel (678910),
emai | addr s([])

)

) |

XPi: a typed process calculus for XML messaging — p.10/26

Example: queries

-

An Input process a.(Q;)P 1S a channel a followed by an
abstraction (Q;)P.

The following query extracts the content of the tag nane
from the two per son elements:

Qz) = (addr book[per son[name(x),
_1

person| nane(y),
_]){:C,y}

|

XPi: a typed process calculus for XML messaging — p.11/26

Message

Query
List

Abstraction

Syntax of messages

M ::

Q ::
LM ::

A

Value

Var

Tag

List
Abstraction

Empty list
Var
Concatenation

Query and Continuation

Var J

XPi: a typed process calculus for XML messaging — p.12/26

Example: processes

o N

Consider the query @y, ,,» previously defined, and consider
the following query:

Q:[x} = (addr book[per son[nane(x), _]])

We can define the following process:

P = (a(M)](a.(Q) P + a.(Qpu) P2)) else Py

o |

XPi: a typed process calculus for XML messaging — p.13/26

Syntax of processes

- N

Process P := u(M) Output
> ier @i-A; Guarded Summation
Pelse R Else

P | Py Parallel
P Replication
(va)P Restriction

- N

XPi: a typed process calculus for XML messaging — p.14/26

Example: derived constructs

o N

Application:
(Qz)P oM = (ve)(c(M)|c.(Qz)P)
o Case:
if M of)z then Py else P, = ((Qz)PL e M) else P,
Decomposition:
if M of Qz ++ Q7 then Py else P, = R([[], M]) where:
R([l,z]) =if x of (y - w) gy) then (if IQy of Qz
then (if w of Q7 then P
else R([lQy,w]))
else R([lQy,w]))

else P
XPi: a typed process calculus for XML 15/26

Example: a streaming audio server

o N

® Consider a web service W S that offers two different
services:

s an audio streaming service, offered at channel
stream;

o a download service offered at download.

Clients that request the first service must specify a
channel for the streaming and its capacity.

Clients that request download must specify only a
channel.

o |

XPi: a typed process calculus for XML messaging — p.16/26

Example: a streaming audio server

-

The process WS may be the following: T
WSZI(stream.(req_st r eanf bandwi dt h(*l ow’), channel ()] (,})
T(Viow)
+ stream.(r eq_st r eanf bandwi dt h(*hi gh”), channel (y)] (,3)

UV high)

+ download.(r eq_down(2) ¢,1)z(Player)).

The abstraction Player:
Player = (req_streani bandw dt h(z), channel (y)] ¢, ,3)
(Case z of “l oW = T(Viow)

“hi gh” = §<Vhigh>)-

o |

XPi: a typed process calculus for XML messaging — p.17/26

Reductions semantic

o N

j€l aj=a, A;j= (Qz)P, match(M,Q,0)

COM
() a(M)| » a;.Aj— Po
1€1
P=P, P—-R., R=R

(STRUCT) 7

P P
CTX _ _
CT Tarm = va@R

P P

(ELSE) Pelse R — P’
(ELSE>) L

Pelse R — R J

XPi: a typed process calculus for XML messaging — p.18/26

Reductions semantic

(COM) jel aj=a, Aj=(QzP, match(M,(Q,0)

a(M)| > ai.A; — Po

el

o

Type Checking

We define a typed calculus with annotated queries:
A = ((Qi)z, : 'g,) P, where dom(I'g,) = ;.

We define a notion of types.

We define a subtyping relation;

To every channel we associate a capacity, that is the
type of the messages that the channel can transport;
a : ch(7) Indicates that a channel a can transports
messages of type .

|

XPi: a typed process calculus for XML messaging — p.20/26

Types

Type 7= bt Basic type (bt € BT)
T Top
1 Bottom
f(r) Tag(feF)
LT List
7+ 7 Union
(T)Abs Abstraction

List LT:= |[] Empty
| T Star
| 7-LT Concatenation

- |

XPi: a typed process calculus for XML messaging — p.21/26

Subtyping

The subtyping relation is defined syntactically:

9o

f(int) < xf(int) + *xg(string);

subtyping is contravariant on channel: for every type r
ch(l) > ch(7); that is ch(1) is the type of every channel;

consider the type: = = f|g|T|, T|; the channel that can
transport documents of some type 7/ < 7 is ch(flg[L], 1]).

|

XPi: a typed process calculus for XML messaging — p.22/26

Type Safety

The type system guarantees that well typed processes
satisfy a safety property:

Safety: Let P be an annotated closed process. P Is safe if
and only if for each name a € ch(7):

1. whenever P = (v h)(@(M) | R) then M : 7;

2. suppose 7 Is consistent. Whenever

P = (vh)(Xeri-(Qi)z,)Pi| R) and a; = a then Q; is
T-consistent.

|

XPi: a typed process calculus for XML messaging — p.23/26

Type Safety
| -

The type system guarantees that well typed processes
satisfy a safety property:

Safety: Let P be an annotated closed process. P Is safe if
and only if for each name a € ch(r):

1. whenever P = (v h)(a(M) | R) then M : 7;

2. suppose 7 Is consistent. Whenever

P = (vh)(Y;erai-((Qi)z,)Pi| R) and a; = a then Q; is
T-consistent.

That Is:

services receiving only requests they can understand,;

services offered at a given channel will comply with the
L type declared for that channel.

|

XPi: a typed process calculus for XML messaging — p.24/26

-

Conclusions

-

XPI Is a core calculus for XML messaging, featuring:

© o o o o 0o o

asynchronous communications;

ML-like pattern matching;

name and code mobility;

Integration of static typing;

Integration of a type inference system,

the introduction of dynamic abstractions;

also we have defined a notion of barbed equivalence.

|

XPi: a typed process calculus for XML messaging — p.25/26

Related works
-

XDuce (Hosoya, Pierce), CDuce (Castagna et al.):
typed (functional) languages for XML document
processing;

TQL (Cardelli, Ghelli): logic and query language for
XML, based on a spatial logic for the Ambient calculus;

m-Duce (Meredith et al.): language that features
asynchronous communication and code/name mobillity;

Semantic subtyping for the m-calculus (Castagna,
De Nicola, Varracca): language that is the w-calculus
enriched with a rich form of semantic subtyping and
pattern matching.

|

XPi: a typed process calculus for XML messaging — p.26/26

	Message passing
	Example: WS
	Example: WS
	Example: WS
	Languages for WS
	WS and process calculi
	XPi = XML + $pi $-Calculus
	Example: messages
	Example: messages
	Example: queries
	Syntax of messages
	Example: processes
	Syntax of processes
	Example: derived constructs
	Example: a streaming audio server
	Example: a streaming audio server
	Reductions semantic
	Reductions semantic
	Type Checking
	Types
	Subtyping
	Type Safety
	Type Safety
	Conclusions
	Related works

