
XPi: a typed process calculus for
XML messaging

Lucia Acciai - Michele Boreale

D.S.I. - University of Firenze

XPi: a typed process calculus for XML messaging – p.1/26



Message passing

The design of globally distributed application (WS, B2B)
is centered around asynchronous message passing in
the form of XML documents.

The choise of message passing is due to:
its conceptual simplicity;
minimal infrastructural requirements;
neutrality with respect to platforms and back-ends of
services.

XPi: a typed process calculus for XML messaging – p.2/26



Example: WS

CLIENT

WS1request

XPi: a typed process calculus for XML messaging – p.3/26



Example: WS

CLIENT

request

WS3

WS2

WS4

WS1

collaboration

XPi: a typed process calculus for XML messaging – p.4/26



Example: WS

collaborationCLIENT

request

WS3

WS2

WS4

WS1

response

XPi: a typed process calculus for XML messaging – p.5/26



Languages for WS

There are several languages and standard for WS
(WSDL, BPEL4WS, . . . ), some of them draw their
inspiration from the π-calculus.

Among these languages we can recognize two extreme:
WSDL: which says very little about behaviour;
BPEL4WS, BizTalk, . . . : which are hardly amenable
to formal analisys.

XPi: a typed process calculus for XML messaging – p.6/26



WS and process calculi

We propose an asynchronous version of the π-calculus
where:

names represent addresses on the net;

messages passed around are XML documents;

we generalize ordinary inputs with filtering;

static (dynamic) typing ensures the run time safety
property.

XPi: a typed process calculus for XML messaging – p.7/26



XPi = XML + π-Calculus

XPi is a process calculus based on the asynchronous
π-Calculus where:

messages are represented as nested and tagged lists;

we generalize the ordinary input actions with queries,
which are open messages with no abstractions;

a type system and a type inference system are
provided;

a notion of barbed equivalence allows to validate
interesting equations.

XPi: a typed process calculus for XML messaging – p.8/26



Example: messages

<addrbook>

<person>

<name>John Smith</name>

<tel>12345</tel>

<emailaddrs>

<email>john@smith</email>

<email>smith@john</email>

</emailaddrs>

</person>

<person>

<name>Eric Brown</name>

<tel>678910</tel>

<emailaddrs></emailaddrs>

</person>

</addrbook>

XPi: a typed process calculus for XML messaging – p.9/26



Example: messages

<addrbook> addrbook([
<person> person([
<name>John Smith</name> name(“John Smith”),
<tel>12345</tel> tel(12345),

<emailaddrs> emailaddrs([
<email>john@smith</email> email(“john@smith”),
<email>smith@john</email> email(“smith@john”)
</emailaddrs> ])

</person> ]),
<person> person([
<name>Eric Brown</name> name(“Eric Brown”),
<tel>678910</tel> tel(678910),

<emailaddrs></emailaddrs> emailaddrs([])
</person> ])

</addrbook> ])

XPi: a typed process calculus for XML messaging – p.10/26



Example: queries

An input process a.(Qx̃)P is a channel a followed by an
abstraction (Qx̃)P .

The following query extracts the content of the tag name
from the two person elements:

Q{x,y} = ( addrbook[person[name(x),
_],

person[name(y),
_] ){x,y}

XPi: a typed process calculus for XML messaging – p.11/26



Syntax of messages

Message M ::= v Value
| x Var
| f(M) Tag
| LM List
| A Abstraction

Query Q ::= . . .

List LM ::= [ ] Empty list
| x Var
| M · LM Concatenation

Abstraction A ::= (Qx̃)P Query and Continuation
| x Var

XPi: a typed process calculus for XML messaging – p.12/26



Example: processes

Consider the query Q{x,y} previously defined, and consider
the following query:

Q′
{x} = (addrbook[person[name(x),_]]){x}

We can define the following process:

P = ( a〈M〉 | (a.(Q′
{x})P1 + a.(Q{x,y})P2) ) else P3

XPi: a typed process calculus for XML messaging – p.13/26



Syntax of processes

Process P ::= u〈M〉 Output
|

∑
i∈I ai.Ai Guarded Summation

| P else R Else
| P1|P2 Parallel
| !P Replication
| (νa)P Restriction

XPi: a typed process calculus for XML messaging – p.14/26



Example: derived constructs

Application:

(Qx̃)P • M = (νc)(c〈M〉|c.(Qx̃)P )

Case:

if M of Qx̃ then P1 else P2 = ((Qx̃)P1 • M) else P2

Decomposition:

if M of Qx̃ ++ Q′
ỹ then P1 else P2 = R([[ ],M ]) where:

R([l, x]) = if x of (y · w){y,w} then (if l@y of Qx̃

then (if w of Q′
ỹ

then P1

else R([l@y, w]))

else R([l@y, w]))

else P2

XPi: a typed process calculus for XML messaging – p.15/26



Example: a streaming audio server

Consider a web service WS that offers two different
services:

an audio streaming service, offered at channel
stream;
a download service offered at download .

Clients that request the first service must specify a
channel for the streaming and its capacity.

Clients that request download must specify only a
channel.

XPi: a typed process calculus for XML messaging – p.16/26



Example: a streaming audio server

The process WS may be the following:
WS

4
=!( stream.(req_stream[bandwidth(“low”),channel(x)]{x})

x〈vlow〉

+ stream.(req_stream[bandwidth(“high”),channel(y)]{y})

y〈vhigh〉

+ download .(req_down(z){z})z〈Player〉).

The abstraction Player:
Player

4
= (req_stream[bandwidth(x),channel(y)]{x,y})

(Case x of “low” ⇒ y〈vlow〉

“high” ⇒ y〈vhigh〉).

XPi: a typed process calculus for XML messaging – p.17/26



Reductions semantic

(COM)
j ∈ I aj = a, Aj = (Qx̃)P, match(M,Q, σ)

a〈M〉 |
∑

i∈I

ai.Ai → Pσ

(STRUCT) P ≡ P ′, P ′ → R′, R′ ≡ R
P → R

(CTX) P → P ′

(νã)(P |R) → (νã)(P ′|R)

(ELSE1) P → P ′

P else R → P ′

(ELSE2) P 9

P else R → R

XPi: a typed process calculus for XML messaging – p.18/26



Reductions semantic

(COM)
j ∈ I aj = a, Aj = (Qx̃)P, match(M,Q, σ)

a〈M〉 |
∑

i∈I

ai.Ai → Pσ

XPi: a typed process calculus for XML messaging – p.19/26



Type Checking

We define a typed calculus with annotated queries:

Ai = ((Qi)x̃i
: ΓQi

)Pi, where dom(ΓQi
) = x̃i.

We define a notion of types.

We define a subtyping relation;

To every channel we associate a capacity, that is the
type of the messages that the channel can transport;
a : ch(τ) indicates that a channel a can transports
messages of type τ .

XPi: a typed process calculus for XML messaging – p.20/26



Types

Type τ ::= bt Basic type (bt ∈ BT )

| T Top
|

T

Bottom
| f(τ) Tag (f ∈ F)

| LT List
| τ + τ Union
| (τ )Abs Abstraction

List LT ::= [ ] Empty
| ∗ τ Star
| τ · LT Concatenation

XPi: a typed process calculus for XML messaging – p.21/26



Subtyping

The subtyping relation is defined syntactically:

f(int) < ∗f(int) + ∗g(string);

subtyping is contravariant on channel: for every type τ

ch(
T

) > ch(τ); that is ch(
T

) is the type of every channel;

consider the type: τ = f [g[T], T]; the channel that can
transport documents of some type τ ′ < τ is ch(f [g[

T

],

T

]).

XPi: a typed process calculus for XML messaging – p.22/26



Type Safety

The type system guarantees that well typed processes
satisfy a safety property:
Safety: Let P be an annotated closed process. P is safe if

and only if for each name a ∈ ch(τ):

1. whenever P ≡ (ν h̃)(a〈M〉 |R) then M : τ ;

2. suppose τ is consistent. Whenever
P ≡ (ν h̃)(

∑
i∈I ai.((Qi)x̃i

)Pi |R) and ai = a then Qi is
τ -consistent.

XPi: a typed process calculus for XML messaging – p.23/26



Type Safety

The type system guarantees that well typed processes
satisfy a safety property:
Safety: Let P be an annotated closed process. P is safe if

and only if for each name a ∈ ch(τ):

1. whenever P ≡ (ν h̃)(a〈M〉 |R) then M : τ ;

2. suppose τ is consistent. Whenever
P ≡ (ν h̃)(

∑
i∈I ai.((Qi)x̃i

)Pi |R) and ai = a then Qi is
τ -consistent.

That is:

services receiving only requests they can understand;

services offered at a given channel will comply with the
type declared for that channel.

XPi: a typed process calculus for XML messaging – p.24/26



Conclusions

XPi is a core calculus for XML messaging, featuring:

asynchronous communications;

ML-like pattern matching;

name and code mobility;

integration of static typing;

integration of a type inference system;

the introduction of dynamic abstractions;

also we have defined a notion of barbed equivalence.

XPi: a typed process calculus for XML messaging – p.25/26



Related works

XDuce (Hosoya, Pierce), CDuce (Castagna et al.):
typed (functional) languages for XML document
processing;

TQL (Cardelli, Ghelli): logic and query language for
XML, based on a spatial logic for the Ambient calculus;

π-Duce (Meredith et al.): language that features
asynchronous communication and code/name mobility;

Semantic subtyping for the π-calculus (Castagna,
De Nicola, Varracca): language that is the π-calculus
enriched with a rich form of semantic subtyping and
pattern matching.

XPi: a typed process calculus for XML messaging – p.26/26


	Message passing
	Example: WS
	Example: WS
	Example: WS
	Languages for WS
	WS and process calculi
	XPi = XML + $pi $-Calculus
	Example: messages
	Example: messages
	Example: queries
	Syntax of messages
	Example: processes
	Syntax of processes
	Example: derived constructs
	Example: a streaming audio server
	Example: a streaming audio server
	Reductions semantic
	Reductions semantic
	Type Checking
	Types
	Subtyping
	Type Safety
	Type Safety
	Conclusions
	Related works

