Semistructured Data and Hybrid Multimodal Logic

Nicole Bidoit

LRI-Université Paris XI, Orsay bidoit@lri.fr

Guidelines what has been done • initial / naive motivation • what is hybrid modal logic all about? • generalizing DTD to capture reference typing? • extended DTD and HMLwork in progress • a tableau system for finite model checking • expressing Xpath queries and optimization • HML and automata ... • other "modal" dimensions : time, ...

initial / naive motivation • semistructured data is a labelled graph • a Kripke model is a labelled graph (multimodal interpretation for multimodal logic) • semistructured data is a Kripke model Let us investigate modeling and reasoning over semistructured data by using modal logic

- Modal propositional logics
 - simple languages for talking about any kind of graphs tree-structures, transition networks, parse trees, networks of properties, ontologies, flows of time, ... possible worlds
- Usefuf in a wide range of applications
 (simple syntax, often decidable)
 logics of time, computation, parsing, ... linguistics
- relational structures are ubiquitous
- relational structures are models of classical model theory

 Modal logic is a (decidable) fragment of classical logic

• Syntax

```
a set of propositional symbols p, q, ..., conjunction \land, negation \neg, the modalities [e] where e \in \mathcal{E} (finite set of labels),
```

• Semantics: an internal and local perspective

To evaluate a formula (satisfaisability) one places it inside the model (graph) \mathfrak{M} at some node s one is allowed to "scan" nodes but only those that are accessible from the current one:

 $\mathfrak{M}, g, s \models [e] \psi$ iff $\forall s'$ such that $(s, s') \in r_e$ we have $\mathfrak{M}, g, s' \models \psi$ $\mathfrak{M}, g, s \models \langle e \rangle \psi$ iff $\exists s'$ such that $(s, s') \in r_e$ with $\mathfrak{M}, g, s' \models \psi$

- Modal Logics : What exactly is missing?
 - 1. Nodes (states) are at the heart of modal logic
 - 2. Nothing to grips with them

Example: No e-labelled edge from the node s to itself $\neg \langle e \rangle$??

- Hybrid Modal Logics: What do we need? to deal with nodes **explicitly**
- Syntax

nominals = names for nodes state variables = variables capturing nodes move to operator $@_x$ = moves to the node xbinder $\downarrow x$ = binds x to the current node

nominals and state variables are formulas
the move to operator and the binder are new "modalities"

Example: No e-labelled edge from the node s to itself $\downarrow x \ \neg \langle e \rangle x$

Semantics

$$\mathfrak{M}, g, s \models a \text{ iff } I_{nom}(a) = s$$
 ($a \text{ is a nominal}$)
 $\mathfrak{M}, g, s \models x \text{ iff } g(x) = s$ ($x \text{ is a state variable}$)
 $\mathfrak{M}, g, s \models \downarrow x \psi \text{ iff } \mathfrak{M}, g', s \models \psi \text{ with } g \stackrel{x}{\sim} g' \text{ and } g'(x) = s$
 $\mathfrak{M}, g, s \models @_x \psi \text{ iff } \mathfrak{M}, g, g(x) \models \psi$

 \mathfrak{M} is a Kripke structure (a labelled graph), g is a valuation of state variables and s is a node in \mathfrak{M} .

Constraints over semistructured data and Hybrid modal Logic

Examples:

$$[author]\neg Scott \\ [doc](\langle book \rangle \top \vee \langle article \rangle \top) \\ @_{root}[doc][article]\langle author \rangle \top$$

$$\begin{array}{c} [publisher][name]Herm\grave{e}s \\ \downarrow x \ \langle \overrightarrow{publishedby} \rangle \langle \overrightarrow{publish} \rangle x \end{array}$$

• First Result: Hybrid multimodal logic subsumes the language \mathcal{P} devised to define forward and backward constraints.

Examples: "given any book x, if x is published by y then y publishes x,".

$$\forall xy(\exists z(r_{doc}(root, z) \land r_{book}(z, x)) \land r_{\overrightarrow{publishedby}}(x, y) \Rightarrow r_{\overrightarrow{publish}}(y, x))$$

$$@_{root}[doc][book] \downarrow x ([\overrightarrow{publishedby}] \langle \overrightarrow{publish} \rangle x)$$

Constraints over semistructured data and Hybrid modal Logic

• Second Result: Hybrid multimodal logic is strictly more expressive than the language \mathcal{P} devised to define forward and backward constraints.

Examples: a book has exactly one isbn number.

 $@_{root}[doc][book] \downarrow x (\langle isbn \rangle \downarrow y (@_x[isbn]y))$

• Other modalities (behond first order):

 ${f G}$: accessibility via all path ${f F}$: accessibility via one path

 $G\psi \equiv \text{at any } s \text{ accessible via a path from the current state, } \psi \text{ holds.}$

 $F\psi \equiv$ there is a s accessible from the current state via a path where ψ is satisfied.

Generalizing DTDs

• Main Goal: Typing references

A schema is specified by a **pattern grammar**

A datagraph is an instance of a schema if

Forgetting about the references leads to a tree

The pattern grammar strictly matches the data graph

Marks are valids (marking functions are defined during matching)

• Pattern grammar (by example)

```
egin{array}{lll} Root & ::= & (doc\ Doc)^*, (publisher\ Publisher)^* \ Publisher & ::= & (name\ Name)^!, (\overline{publish}\ Book)^* \ Doc & ::= & (article\ Art)^! \mid (book\ Book)^! \ Art & ::= & (author\ Name)^+, (title\ Name)^!, (date\ Dat)^?, (\overline{cite}\ Doc)^* \ Book & ::= & (isbn\ Isb)^!, (\overline{cite}\ Doc)^* \mid (author\ Name)^+, (date\ Dat)^!, \ & (title\ Name)^!, (\overline{cite}\ Doc)^*, (\overline{publisedby}\ Publisher)^! \ Name & ::= & \Lambda & Dat ::= \Lambda & Isb ::= \Lambda \ \end{array}
```

Generalizing DTDs

• Pattern grammar (Limitations)

Root is the start symbol, and

No pattern $(e \ Root)^{op}$ occurs in the right hand side of rules

For each couple of patterns $(e_1 \ N_1)^{op_1}$ and $(e_2 \ N_2)^{op_2}$,

if
$$e_1 = e_2$$
 then $N_1 = N_2$

• What does it implies?

Each node of an instance has a unique "type".

• An example of a recursive schema

```
Root ::= (tree\ Tr)^+
Tr ::= (lt\ Tr)!, (rt\ Tr)! \mid (leaf\ L)!
```

Generalizing DTDs and Hybrid Multimodal logic

• Result:

Figure 2: Schema Translation

Generalizing DTDs and Hybrid Multimodal logic

• Translation of Pattern Grammar

The data graph without references is a tree

The pattern grammar matches the data graph

$$@_{root}(\varphi_{Root} \wedge \bigwedge_{e \in E} G^*[e]\varphi_{Symb(e)})$$

Marks (for reference typing) are valid

$$@_{root}\left(\bigwedge_{\overrightarrow{e}\in\overrightarrow{E}}G^*[\overrightarrow{e}]\downarrow x\ \left(\bigvee_{e\in Label(Symb(\overrightarrow{e}))\cap E}@_{root}F^*\langle e\rangle x\right)\right)$$

Generalizing DTDs and Hybrid Multimodal logic The Example

A Tableau System for model checking

• Problem

Given a pattern grammar \mathcal{G} and constraints \mathcal{C} Find a (finite) instance of \mathcal{G} satisfying \mathcal{C} (if it exists)

• Prefixed Tableau System

Numerator and denominator of rules are prefixed with a "frame" (a pre-instance)

The pattern grammar is embedded in the proof system

Limitations

Non recursice pattern grammar

 \rightarrow enforces the building of finitely deep graphs

Restriction on the imbrication of $@_x$ and $\downarrow x$

 \rightarrow enforces the building of finitely large graphs

