
CDuce: an XML-Centric Language

Presenter: Walter Chang

Overview

What is CDuce?
CDuce and XML
A CDuce Tutorial
CDuce Language Features
CDuce Type System
Other Concerns
Discussion

What is CDuce?

Strongly typed
Functional (ML-Like)
Direct syntactic support for XML
More like embedding ML into XML than
embedding XML into ML...

CDuce: What is it good for?

Small adapters between XML applications
Larger XML-oriented applications
Web Applications
Web Services

So sayeth the authors at http://www.cduce.org

Is there anything else?

What does CDuce's XML look like?
<?xml version="1.0"?>
<parentbook>
 <person gender="F">
 <name>Clara</name>
 <children>
 <person gender="M">
 <name>Pål André</name>
 <children/>
 </person>
 </children>
 <email>clara@lri.fr</email>
 <tel>314-1592654</tel>
 </person>
 <person gender="M">
 <name> Bob </name>
...snipped for space
 </person>
</parentbook>

let parents : ParentBook =
<parentbook>[
 <person gender="F">[
 <name>"Clara"
 <children>[
 <person gender="M">[
 <name>['Pål ' 'André']
 <children>[]
]
]
 <email>['clara@lri.fr']
 <tel>"314-1592654"
]
 <person gender="M">[
 <name>"Bob"
...snipped for space
]
]

Gosh, that's just like XML!

<tag>some string</tag>

<tag>
 child1
 child2 ...
</tag>

<tag property=”value”>...

<tag>”some string”

<tag>[
 child1
 child2 ...
]

<tag property=”value”>...

The XML... ...becomes CDuce

Question: If the conversion is so trivial, why not just use
XML syntax?

What was that parents : ParentBook thing on the last
slide? It isn't in the XML!

We Have Types
(* a ParentBook contains zero or more Persons *)
type ParentBook = <parentbook>[Person*]

(* a Person has a gender, which is either “M” or “F”,
 and contains a name, children, and possibly
 multiple phone numbers or email addresses *)
type Person = <person gender = ”M” | ”F”>[
 Name Children (Tel | Email)*]

(* a Name contains some data *)
type Name = <name>[PCDATA]

(* Children contains zero or more Persons *)
type Children = <children>[Person*]

(* a phone is one or more digits, an optional
 hyphen, and one or more digits *)
type Phone = <phone kind=?”home”|”work”>
 ['0'--'9'+ '-'? '0'--'9'+]

Your First Function

names takes a ParentBook and returns zero or
more Names
<parentbook>x matches every element
contained by the <parentbook>
map x with ... performs an action on each
element in the parents book
The n in [n _*] matches the first element in the
person (which is the name)
The _* in [n _*] matches all other elements,
and discards them

let names (ParentBook -> [Name*])
 <parentbook>x -> (map x with <person>[n _*] -> n)

Your Second Function

transform will filter out anything that does not
match its pattern
n is bound to the first element (name)
The pattern requires that <children> be present
with exactly two persons
This will return all the names of people who
have exactly two children
Regular Expression patterns work like you think
they do

let names (ParentBook -> [Name*])
 <parentbook>x ->
 (transform x with
 <person>[n <children>[Person Person]_*] -> n)

Function Overloading

add is a function of type (Int*Int)->Int or
(String*String)->String

The body of add has an arm for each possible
type of add
add will add the arguments (if they are of type
Int), or concatenate the arguments (if they are
of type String)

let add ((Int,Int)->Int ; (String,String)->String)
 | (x & Int, y & Int) -> x + y
 | (x & String, y & String) -> x @ y

This is actually pretty powerful...

A Complex Example

type Person = FPerson | MPerson
type FPerson = <person gender = "F">[Name Children]
type MPerson = <person gender = "M">[Name Children]
type Children = <children>[Person*]
type Name = <name>[PCDATA]

type Man = <man name=String>[Sons Daughters]
type Woman = <woman name=String>[Sons Daughters]
type Sons = <sons>[Man*]
type Daughters = <daughters>[Woman*]

let fun split (MPerson -> Man ; FPerson -> Woman)
 <person gender=g>[<name>n <children>[(mc::MPerson | fc::FPerson)*]] ->
 (* the above pattern collects all the MPerson in mc,
 and all the FPerson in fc *)
 let tag = match g with "F" -> `woman | "M" -> `man in
 let s = map mc with x -> split x in
 let d = map fc with x -> split x in
 <(tag) name=n>[<sons>s <daughters>d] ;;

A Closer Look

All the MPersons accumulate in mc, and all the
FPersons accumulate in fc
tag takes on the (symbolic) values `woman or
`man depending on whether it saw “F” or “M”
We map mc and fc over the split of the children
We build either a <man> or a <woman>, with
<sons> and <daughters> as appropriate
Observe that we can compute on tags!

let fun split (MPerson -> Man ; FPerson -> Woman)
 <person gender=g>[<name>n <children>[(mc::MPerson | fc::FPerson)*]] ->
 (* the above pattern collects all the MPerson in mc,
 and all the FPerson in fc *)
 let tag = match g with "F" -> `woman | "M" -> `man in
 let s = map mc with x -> split x in
 let d = map fc with x -> split x in
 <(tag) name=n>[<sons>s <daughters>d] ;;

Higher-Order Functions

loop takes in a function of type f (String ->
Bool)
k can be called as any other function, and
passed into other functions
Anonymous non-recursive functions are
declared with the same syntax, but without a
function name (see accept)

type f = String -> Bool
let loop (re : regexp, k : f) : f = fun (s : String) : Bool =
match re with
| <chr> p -> (match s with (c,s) -> (c = p) && (k s) | _ -> `false)
| <seq> (r1,r2) -> loop (r1, (loop (r2,k))) s
| <alt> (r1,r2) -> loop (r1,k) s || loop (r2,k) s
| <star> r -> loop (r,(loop (re,k))) s || k s

let accept (re : regexp) : f =
 loop (re, fun (String -> Bool) [] -> `true | _ -> `false)

Walking and Changing XML
type HTMLContents = [HTMLContents*] |
 <p>[HTMLContents*] | [HTMLContents*] | ...

let em2it (HTMLContents -> HTMLContents)
 foo -> <it>foo
 | x -> x

let walk_postorder (f: HTMLContents -> HTMLContents,
 h: HTMLContents) : HTMLContents =
 f(match h with
 | <(x)>y -> <(x)>
 (map y with z -> walk_postorder(f, z))
 | x -> x)
in
walk (em2it, my_html_contents)

This sort of general mechanism can fake
replacement-in-place of subtrees a la XSLT...

Miscellaneous Language Features

The usual arithmetic and boolean operators
XML Namespace support (not discussed in
paper)
Tuples
Sequences (you've seen them: tags have
sequences of elements...)
Records (which are used in XML attributes)
Reference type and imperative assignment (not
discussed in paper)

This is a general-purpose language, not just a query language.
Are we missing anything?

Type System Overview

CDuce is designed around the types
Pattern Matching seen as dynamic dispatch on
types with extraction (claimed to be more
powerful than dynamic dispatch in OO
languages)
Type correctness of CDuce transformations can
be checked statically
Exact type inference: the typing algorithm can
find exactly the set of capturable values
A compiler is mentioned

CDuce and DTD checking

<!ELEMENT person (name, children)>
<!ELEMENT children (person+)>
<!ELEMENT name (#PCDATA)>

Observe that no actual document of this DTD can
exist: expansion would result in an infinite tree.

We can declare this in a straightforward manner:

type Person = <person>[Name Children]
type Children = <children>[Person+]
type Name = <name>[PCDATA]

What do you think will happen?

CDuce and DTD checking, continued

Warning at chars 57-76:
type Children = <children>[Person+]
This definition yields an empty type for Children
Warning at chars 14-39:
type Person = <person>[Name Children]
This definition yields an empty type for Person

Ok.

Actual result from CDuce online demo:

The paper refers you to their paper on Semantic Subtyping
for a more theroetical discussion of the “magic” behind their
type system

Magic, eh?

CDuce's type system is theoretically built
around the set-theoretic interpretation of types
as sets of values
Sound and complete (with respect to set
inclusion)
More powerful than most static type systems,
but at a price
Typing CDuce programs is theoretically
complex: “the subtyping relation itself is already
exponential...”

...but is that so bad?

Implementation Details

Type checker: mixed top-down and bottom-up;
propagates constraints (with efficient local
solver for monotonic boolean constraints)
Type-driven compilation (details forthcoming in
another paper)
Pattern matching uses “a new kind of tree
automata”
Other minor optimizations (lazy concatenation,
etc)
Good performance (typically better than XSLT)
Not very sensitive to hand-optimization (due to
type-driven compilation)

Conclusion

CDuce is a full-featured language
CDuce allows for very natural expression of
XML and XML transformations
CDuce has a very rich and powerful type system
CDuce is statically checked
CDuce has never been used for large programs

Discussion

What features should an XML-centric language
have?
How important is static checking and
performance?
Is this the right approach? Do XML-centric
languages have a place, or is extending a
general-purpose language preferable?

