a1

!;bDuce: an XML-Centric Language

Presenter: Walter Chang

a4

e

xbverview

!

kb What is CDuce?

‘ ~P» CDuce and XML

‘1 » A CDuce Tutorial

“4% » CDuce Language Features
“» CDuce Type System
4, Other Concerns

e .
*’1 » Discussion

"ﬂ

2

L

-4
;What is CDuce?

l

& » Strongly typed

4 s Functional (ML-Like)

‘1 » Direct syntactic support for XML

“ 4% » More like embedding ML into XML than
‘ -il embedding XML into ML...

4

/

2

)

'_f

4 CDuce: What is it good for?

!

&

‘ = » Small adapters between XML applications
I, » Larger XML-oriented applications

» Web Applications
‘ ‘ » Web Services

,1 So sayeth the authors at http://www.cduce.org
)

>

2

Is there anything else?

a'd

Y‘What does CDuce's XML look like?

let parents : ParentBook =

<?xml version="1.0"7?>
<parentbook>
<person gender="F">
<name>Clara</name>
<children>
<person gender="M">
<name>P3al André</name>
<children/>
</person>
</children>
<email>clara@lri.fr</email>
<tel>314-1592654</tel>
</person>
<person gender="M">
<name> Bob </name>
...Snipped for space
</person>
</parentbook>

<parentbook>|
<person gender="F">]|
<name>"Clara"
<children>|

<person gender="M">]|

<name>['Pal
<children>7[]

]
<email>['clara@lri
<tel>"314-1592654"
]
<person gender="M">]|
<name>"Bob"
..Ssnipped for space

]

'André']

Ltr']

a'd

;GOSh, that's just like XML!

k
o
2

~

J
R4
> oJ

The XML... ...becomes CDuce
<tag>some string</tag> <tag>"some string”
<tag> <tag>|
childl childl
child2 ... child2 ...
</tag>]
<tag property="value”>... <tag property="value”>...

Question: If the conversion 1s so trivial, why not just use
XML syntax?

What was that parents : ParentBook thing on the last
slide? Itisn't in the XML!

ad

X\Ne Have Types

| (* a ParentBook contains zero or more Persons *)
k type ParentBook = <parentbook>[Person*]

‘_ (* a Person has a gender, which 1s either “M"” or “F7”,
_\ and contains a name, children, and possibly

, multiple phone numbers or email addresses *)

” type Person = <person gender = "M" | "F">]

Name Children (Tel | Email) *]

‘ ‘ (* a Name contains some data *)
-~ I type Name = <name>[PCDATA]

(* Children contains zero or more Persons ¥*)
type Children = <children>[Person¥*]

(* a phone 1s one or more digits, an optional
hyphen, and one or more digits *)

type Phone = <phone kind=7?"home” |"work”>
['O'__'9'+ '_'? 'O'__'9'+:|

ad
-~

XYour First Function

! let names (ParentBook —-> [Name*])
k <parentbook>x —-> (map x with <person>[n _*] —-> n)

-1 » names takes a parentBook and returns zero or
- Mmore Name$S
* | P <parentbook>x matches every element

‘! contained by the <parentbook>
‘4 P»nap x with ... performs an action on each
'@ elementin the parents book
& . P Thenin [n _*] matches the first element in the
® & person (which is the name)
% » The _*~in [n _*] matches all other elements,

;4 and discards them

ad
-~

XYour Second Function

! let names (ParentBook —> [Name*])
k <parentbook>x —>
‘ (transform x with

e <person>[n <children>[Person Person]_*] —> n)

"‘1 » transform WIll filter out anything that does not
* ' match its pattern
‘; » n is bound to the first element (name)
“A > The pattern requires that <children> be present
4 With exactly two persons
. P This will return all the names of people who
D% have exactly two children
» Regular Expression patterns work like you think

;4 they do

ad

-
\a Function Overloading
/ let add ((Int,Int)->Int ; (String,String)->String
k | (x & Int, y & Int) -> x + vy
. | (x & String, y & String) -> x (@ y

1 » add Is a function of type (Int*Int)->Int OrF
‘ (String*String) —>String
‘ » The body of add has an arm for each possible
type of add
q ¥ add will add the arguments (if they are of type
e ,x Int), Or concatenate the arguments (if they are

5% of type string)

‘\] This is actually pretty powerful...

)

a'd

Y‘\A Complex Example

type Person = FPerson | MPerson
ww type FPerson = <person gender = "F">[Name Children]
type MPerson = <person gender = "M">[Name Children]
type Children = <children>[Person*]
”~ type Name = <name>[PCDATA]
type Man = <man name=String>[Sons Daughters]
type Woman = <woman name=String>[Sons Daughters]
‘ type Sons = <sons>[Man*]
type Daughters = <daughters>[Woman*]
-~
. let fun split (MPerson —-> Man ; FPerson —> Woman)
- <person gender=g>[<name>n <children>[(mc::MPerson | fc::FPerson) *]
! ‘ (* the above pattern collects all the MPerson in mc,

let d = map fc with x -> split x in

and all the FPerson in fc *)

let tag = match g with "F" -> "woman | "M" -> "man in
let s = map mc with x -> split x in

<(tag) name=n>[<sons>s <daughters>d] ;;

ad
-~

XA Closer Look

let fun split (MPerson —> Man ; FPerson —-> Woman)

f <person gender=g>[<name>n <children>[(mc::MPerson | fc::FPerson) *]
k (* the above pattern collects all the MPerson in mc,

and all the FPerson 1in fc *)
4. let tag = match g with "F" -> "woman | "M" -> "man in

— let s = map mc with x -> split x in

- let d = map fc with x —> split x 1in

<(tag) name=n>[<sons>s <daughters>d] ;;

”~
. » All the MPersons accumulate in mc, and all the

* 4 TFPersons accumulatein fc

“A ! » tag takes on the (symbolic) values " woman or
.2 mandepending on whether it saw “F” or “M”
" » We map mc and fc over the split of the children
b & » We build either a <man> or a <woman>, with
% <sons> and <daughters> as appropriate
;4 » Observe that we can compute on tags!

]

—>

ad
-

legher Order Functions

type £ = String —> Bool

let loop (re : regexp, k : f) : £ = fun (s : String) : Bool =
k match re with

| <chr> p -> (match s with (c,s) -> (c = p) && (k s) | _ —-> " false)
.___ | <seg> (rl,r2) —> loop (rl, (loop (r2,k))) s

| <alt> (rl,r2) —-> loop (rl,k) s || loop (r2,k) s
-1 | <star> r —-> loop (r, (loop (re,k))) s || k s
a4 let accept (re : regexp) : f =

loop (re, fun (String -> Bool) [] -> " true | _ —-> " false)

‘ 4’, » loop takes in a function of type £ (String ->

“4 Bool)
. q ¥ kcan be called as any other function, and

4 . passed into other functions
.% » Anonymous non-recursive functions are
declared with the same syntax, but without a

;4 function name (see accept)

ad

¥ Walking and Changing XML

!

k type HTMLContents = [HTMLContents*] |
<p>[HTMLContents*] | [HTMLContents*] |

‘"'_ let em2it (HTMLContents —> HTMLContents)

- foo —-> <it>foo
X —> X
”~ |

j let walk postorder (f: HTIMLContents —-> HTMLContents,
h: HTMLContents) : HTMLContents =
‘ f (match h with
” I | <(x)>y —> <(x)>
(map y with z —-> walk_postorder(f, z))

— | X => x)

L4 .
‘ walk (em21t, my_html_contents)

This sort of general mechanism can fake
replacement-in-place of subtrees a la XSLT...

ad
-~

XMisoeIIaneous Language Features

r
k » The usual arithmetic and boolean operators
| S XML Namespace support (not discussed in
- paper)
“4&5 » Tuples
S » Sequences (you've seen them: tags have
‘! sequences of elements...)
“4 > Records (which are used in XML attributes)
. 'q” Reference type and imperative assignment (not
@, discussed in paper)

=

This is a general-purpose language, not just a query language.

‘l ' i Are we missing anything?

ad
o

XType System Overview

f
kb CDuce is designed around the types
1 Pattern Matching seen as dynamic dispatch on
1 types with extraction (claimed to be more
+ powerful than dynamic dispatch in OO
§ ' languages)
> Type correctness of CDuce transformations can
“A Dbe checked statically
e’ Exact type inference: the typing algorithm can
.~ find exactly the set of capturable values
b‘%b A compiler is mentioned

N

)
X‘CDuce and DTD checking
!

&

<!ELEMENT person (name, children)>
<!ELEMENT children (persont)>
<!ELEMENT name (#PCDATA) >

Observe that no actual document of this DTD can
exist: expansion would result in an infinite tree.

We can declare this in a straightforward manner:

type Person = <person>|[Name Children]
type Children = <children>[Person+]
type Name = <name>[PCDATA]

What do you think will happen?

ad

¥ CDuce and DTD checking, continued
!
&

Actual result from CDuce online demo:

Warning at chars 57-76:

type Children = <children>[Persont]

This definition yields an empty type for Children
Warning at chars 14-39:

type Person = <person>[Name Children]

This definition yields an empty type for Person

Ok .
The paper refers you to their paper on Semantic Subtyping

for a more theroetical discussion of the “magic” behind their
type sysiem

ad
o

XMagic, eh?
!

& » CDuce's type system is theoretically built
i around the set-theoretic interpretation of types

1 as sets of values
+ » Sound and complete (with respect to set
§ ' inclusion)
¢, » More powerful than most static type systems,
A but at a price
e Typing CDuce programs is theoretically
4 complex: “the subtyping relation itself is already

b g exponential...”
...but is that so bad?

N

a4
o

zlmplementation Detalls

!

3 » Type checker: mixed top-down and bottom-up;
P propagates constraints (with efficient local
1 solver for monotonic boolean constraints)
» Type-driven compilation (details forthcoming in

& ' another paper)

€» Pattern matching uses “a new kind of tree

automata”

' a4 » Other minor optimizations (lazy concatenation,
4-‘ etc)
» . » Good performance (typically better than XSLT)
‘%b Not very sensitive to hand-optimization (due to

i & type-driven compilation)

ad

X”Conclusion

r
kb CDuce is a full-featured language
1 CDuce allows for very natural expression of
- XML and XML transformations
“4% » CDuce has a very rich and powerful type system
‘ » CDuce is statically checked

‘!b CDuce has never been used for large programs

4

*kf ’3\7"’- \

ad

) JA -
\a Discussion

r

& » What features should an XML-centric language
~— have?

'1 » How important is static checking and

e performance?

‘ > |s this the right approach? Do XML-centric
‘f languages have a place, or is extending a

“4 general-purpose language preferable?

*kf ’3\7" . \

