
Error Mining for Regular Expression Patterns

Giuseppe Castagna1, Dario Colazzo2, and Alain Frisch3

1 CNRS, Ecole Normale Supérieure de Paris, France
2 LRI, Université Paris Sud, Orsay, France

3 INRIA, Rocquencourt, France

Abstract. In the design of type systems for XML programming languages based
on regular expression types and patterns the focus has been over result analysis,
with the main aim of statically checking that a transformation always yields data
of an expected output type. While being crucial for correct program composition,
result analysis is not sufficient to guarantee that patterns used in the transforma-
tion are correct. In this paper we motivate the need of static detection of incorrect
patterns, and provide a formal characterization based on pattern matching opera-
tional semantics, together with locally exact type analysis techniques to statically
detect them.

1 Introduction

Current type systems for query and transformation languages for XML data,
such as those of XQuery [DFF+05], CDuce [BCF03], Cω [BMS05], XDuce
[Hos00] mainly aim at result type analysis, that is at statically inferring the
output type of a query or transformation function, starting from its structural
requirements (XPath paths or ML-like patterns) and the input type.

Result analysis has a crucial importance as by statically knowing the output
type, we can check if it is included in the input type required by some other
application. Hence, being the output type an upper bound for values resulted by
the query/function (type soundness), result type analysis constitutes a powerful
tool for sound system composition.

Unfortunately, while result analysis is often sufficient for programming lan-
guages that deal with simple data structures, this is no longer true for languages
manipulating complex data structures as it is the case for XML.

Working on XML trees requires two different powerful language primitives:
(i) iterator primitives in order to navigate XML trees and (ii) deconstructing
primitives (usually called patterns or templates) in order to capture subparts of
their structure. The result analysis is often sufficient to verify correctness of iter-
ators, but it is useless to spot errors hidden inside the deconstructing primitives.
In the context of XML processing languages two different classes of decon-
structing primitives can be found: path expressions (usually XPath paths, but
also the “dot” navigation of Cω) and regular expression patterns.

Path expressions are navigational primitives that finger where to capture
data substructures. They closely resemble the homonymous primitives used by
OQL in the contexts of OODB query languages with the difference that they
return sets or sequences of elements, those that can be reached by the paths they
define. These are at the basis of standard languages such as XSLT or XQuery.

More recently a new kind of deconstructing primitives was proposed, regu-
lar expression patterns [HP01], which extends by regular expressions the pattern
matching as popularized by functional languages such as ML and Haskell. Reg-
ular expression patterns were first introduced in the XDuce [HP00] program-
ming language and then adopted by other projects such as CDuce [BCF03] and
its query language CQL [BCM05], Xtatic [GP03], Scala [OAC+04], XHaskell
[LS04] as well as the extension of Haskell proposed in [BFS04].

As we said result analysis is not sufficient to spot errors a programmer would
have done in defining or writing paths or regular expressions patterns (from
now on, “patterns” for short): indeed with the current technology a program
containing errors in paths/patterns can (and in the absence of other errors, will)
type check. In general, it is difficult to precisely characterize the class of wrong
patterns or paths. An approximation is to consider as wrong those patterns/paths
which contains subparts that are meaningless that is, roughly, that they are never
be used whatever the input of the path/pattern is.

The problem of characterizing and detecting correctness of XPath expres-
sions has been recently tackled by Colazzo et al. [Col04,CGMS04]. The authors
provide quite a precise type analysis technique that, by checking the absence of
matching between paths and input types, statically detects empty sub-queries of
XQuery queries.

In this work we study the same problem for the other family of deconstruct-
ing primitives, that is regular expression patterns. In particular, we show how
to formally define and statically detect patterns that contain subpatterns which
are “never used”. We develop our approach for the pattern algebra of the CDuce
programming language since this algebra is the most general among those of
the cited languages: the pattern algebras of the other languages are subsumed
by the one of CDuce, therefore our technique can be straightforwardly adapted
to them with few or no modifications.

To that end we study how such a kind of local errors can be (i) formally
characterised in terms of operational semantics (hence, independently from a
particular set of type rules) and (ii) statically detected by means of some im-
provements of the existing type systems. In particular, before defining the ex-
tended type system, we give several examples of practical and theoretical mo-
tivations of our study and, then, we give a formal characterization of the class
of errors we want to mine. As we will see, the problem is not obvious to solve,

2

due to possible high irregularities in types and patterns. However, the rich type
algebra of CDuce will ensure a sound and complete analysis for a single pat-
tern matching. The analysis reports a set of sub-patterns which are never used
considering a given input type for the pattern. This analysis can be added to the
CDuce type-checker. Of course, the analysis is then only locally exact (it is ex-
act assuming that the type-checker gives the argument of the pattern matching a
type which exactly denotes all the possible values of this argument at run-time),
but globally sound (if it reports an unused sub-pattern, this sub-pattern is really
useless and hence probably wrong).

Overview The article is organized as follows. In the next section we provide
some practical examples of the kind of errors we want to statically detect and
that elude current type checkers technology. We also show the relevance of such
errors and the importance to detect them when programming XML transforma-
tions. In Section 3 we formally define the class of errors we are interested in,
together with a sound a complete analysis to statically detect them. In Section 4
we discuss the characteristic of our analysis and show how to embed it in exist-
ing type checkers.

2 Motivating examples

In writing programs that process typed XML data, programmers are very likely
to specify in their patterns, only the part of the schema that is strictly necessary
to recover desired data. This is almost always the case when writing programs
that query XML data, but even in the context of XML transformation programs,
very often, only a sub part of the input structure must be matched and processed.

Partial specification of structural requirements can be specified in regular ex-
pression patterns by using the wildcard pattern “_” which matches every value.
This is of crucial importance as it enormously simplifies coding of programs and
makes them more robust to possible evolutions of the data schemas. However,
at the same time, the extensive use of the wildcard patterns is an important (but
not exclusive) source of the kind of errors that we target in this paper: the com-
mon practise of a massive use of wildcard patterns, thus, makes the presence of
undetected errors very likely, whence the importance of our analysis.

As we will explain, the presence of incorrect patterns may strongly compro-
mise quality of system behavior, as incorrect patterns never match data, and, as
a consequence, some desired data may end up to not contribute to partial and/or
final results, without having the possibility of becoming aware of this problem
at compile time. So, negative effects of this problem may be visible only by
careful observing the results of the programs. This makes error detection quite
difficult and the subsequent debugging very hard.

3

Let us see all of this on a standard example, and use it to introduce CDuce
patterns. Consider the following schema:

type Bib = <bib>[Book*]

type Book = <book year=String>[Title (Author+|Editor+) Price?]

type Author = <author>[Last First]

type Editor = <editor>[Last First]

type Title = <title>[PCDATA]

type Last = <last>[PCDATA]

type First = <first>[PCDATA]

type Price = <price>[PCDATA]

The declarations above should not pose any problem to the reader familiar with
XML, DTD, and XML Schema. The type Bib classifies XML-trees rooted at
tag bib that delimits a possibly empty list of books. These are elements with
tag book, an attribute year, and containing a sequence formed exactly by one
element title, followed by either a non empty list of author elements, or a non
empty list of editor elements, and ended by an optional element price. Title
elements are tagged by title and contain a sequence of characters, that is, a
string (in XML terminology “parsed character data”, i.e. PCDATA). The other
declarations have similar explanations.

The declarations above give a rather complete presentation of CDuce types:
there are XML types, that are formed by a tag part and a sequence type (de-
noted by square brackets). The content of a sequence type is described by a
regular expression on types, that is, by the juxtaposition, the application of *, +,
? operators, and the union | of types. Besides these types there also are: (i) val-
ues which are considered singleton types, so for instance "Colazzo" is the type
that contains only the string "Colazzo", (ii) intersection of types, denoted by
s&&&t that contains all the values that have both type s and type t, (iii) difference
“\” of types, so that the type

<book year=String"1999">[Title (Author+|Editor+) Price?]

is the type of all books not published in 1999, (iv) the Any type, which is the
type of all values and which is often denoted as “_”, especially in patterns, and
its complement the Empty type.

Patterns are just types enriched with capture variables. For instance the pat-
tern <bib>[(x::Book)*] captures in x the sequence of all books of a bibliogra-
phy. Indeed, the * indicates that the pattern x::Book must be applied to every
element of the sequence delimited by <bib>. When matched against an element,
the pattern x::Book captures this element in the sequence x, provided that the
element is of type Book. Patterns can then be used in match expressions:

match biblio with <bib>[(x::Book)*] -> x

4

This expression matches biblio against our pattern and returns x as result, thus
it makes nothing but stripping the <bib> tag from biblio. Note that if we knew
that biblio has type Bib, then we could have used the pattern <bib>[(x::Any)*]

(or its syntactic sugar <bib>[(x::_)*] since we statically know that all ele-
ments have type Book.

Besides capture variables there is just one further difference between pat-
terns and types, namely the union operator | is commutative for types while it
obeys a first match policy in patterns. So for instance the following expression
returns the sequence of all the books published in 1999:

match biblio with <bib>[((x::<book year="1999">_) | _)*] -> x

Again, the pattern ((x::<book year="1999">_) | _) is applied to each ele-
ment of the sequence. This pattern first checks whether the element has the tag
<book year="1999"> whatever its sequence of elements is, and if it is so it cap-
tures it in x; otherwise it matches the element against the pattern “_”, which al-
ways succeeds without capturing anything (in this way it discards the element).
Note that, if we had instead used <bib>[(x::<book year="1999">_)*] this
pattern would have succeeded only for bibliographies composed only by books
published in 1999.

After this brief introduction to regular expression patterns, let us show the pat-
tern errors we target in this work. Suppose that, for each book, we need to ex-
tract all titles, together with relative authors or editors. In CDuce we can write
the following function:4

let extract(x : [Book*]) : [(Title (Author+|Editor+))*] =

transform x with

<book>[z::<title>_ y::(<author>_ |<editor>_)+ _*] -> z @ y

The function extract takes a possibly empty sequence of books and returns
a possibly empty sequence where a title alternates with a non-empty uniform
sequence of authors or editors. The expression transform applies the pattern to
each element of the sequence x and returns the concatenation of all the results of
the patterns that have succeeded. The pattern captures the title in the sequence
variable z, the sequence of authors or editors in the sequence variable y, and
returns the concatenation of z and y.

Imagine now that the programmer had put a typo in the pattern, writing
instead:

<book>[z::<tite>_ y::(<author>_ |<editor>_)+ _*] -> z @ y

4 This is not the best way to write this function in CDuce but it serves to outline the problem.

5

then the CDuce compiler would signal an error (actually, a warning), since no
book starts with a <tite> element, so this pattern cannot ever match. But if the
typo had been in the author (or in the editor) pattern:

<book>[z::<title>_ y::(<autor>_ |<editor>_)+ _*] -> z @ y

then no error would be signalled since the pattern can still match editors. How-
ever, all the books with authors would be filtered out from the result, which
would then be of type [(Title Editor+)*]. If we had used a weaker pattern

<book>[z::<title>_ y::(<autor>_ |<editor>_)* _*] -> z @ y

in which we traded a + for a *, then the transform would return all the titles
but only the editor lists (the author lists being matched by the final _* pattern),
yielding a result of type [(Title Editor*)*]. In this case an error would be
signalled but just because we used a very precise type for the function: had we
specified a less precise type such as [(Title (Author|Editor)*)*], then the
error would have passed unnoticed again.

This kind of errors is very frequent when using patterns to code XPath-like
expressions. For instance in CDuce it is possible to write a XPath-like expres-
sion of the form e/t, which is syntactic sugar for

transform e with <_>[(x::t|_)*] -> x

Thus for instance the following query extracts all titles from the database biblio
of type Bib:

[biblio]/<book>_/<title>_

If we replace title with tite, thus introducing an incorrect pattern, CDuce
type system correctly rises a warning stating that the pattern never matches,
as emptiness of a whole expression can be directly checked by result analysis.
However, if we want to extract each title together with the relative price, we can
write

[bib]/<book>_/(<title>_ | <prize>_)

which contains an error, as prize occurs instead of price. But since the result
is not empty no warning is raised. Here, the error is hidden by the fact that the
pattern is partially correct : it does find some match, even if, locally, <prize>_
never matches, hence is incorrect. Note that, as price is optional, by looking
at the query output, when seeing only titles, we do not know whether prices
are not present in that database or something else went wrong This further
motivates improvements of the type system in order to check at static time that
each sub pattern will match in at least one evaluation. The subpattern <prize>_

does not meet this property.

6

As previous examples showed, undetected wrong sub-patterns are mainly
introduced by the pattern _ (i.e. Any), which always matches and, thus, covers
surrounding failures. However, this is far from being the only case. The error in
the last version of extract function was covered by the final _* which captured
all the authors, and possibly the price, of a book. However, the error would have
been hidden even in the absence of _*. Indeed, if we had written

<book>[z::<title>_ y::(<autor>_ |<editor>_)* Price?] -> z @ y

then all the books with authors would have been filtered out, yielding a result of
type [(Title Editor+)*]. But again no type warning would be issued.

Finally, note that even if we used typos to introduce errors, other errors
are possible, as well, of more conceptual nature. Imagine we want to select all
books in which one author is either “Frisch” or “Colazzo”, here is an example
of hidden errors without any typo

let extract(x : [Book*]) : [Title*] =

transform x with

<book>[z::Title _*

(<author>[<last>"Colazzo"]
| <author>[<last>"Frisch" _]) _*] -> z

in this case no book with Colazzo as author will be selected since, contrary to
the pattern for “Frisch”, there is no pattern to match the <first>_ element. But
again no error is signalled.

The technique to detect these errors will be presented in next section. We
will work on binary trees to stay as close as possible to the implementation level
(as these are the structures actually used in XDuce and CDuce to encode regular
expressions) but also because the presentation will result far simpler. The whole
theory can be then easily extended to general cases. As we will see, thanks
to powerful type combinators of CDuce (union, negation, and intersection) the
type rules that we provide are quite intuitive and simple. Also, the efficient im-
plementation of CDuce type system ensures good performance of the newly
introduced analysis, which relies on the same basic operators.

3 Error mining

Let us start by defining a simplified data model and type/pattern algebra. We are
going to work with binary trees whose leaves are taken from a set of constants
C. We use the meta-variable c to range over constants. In CDuce, leaves can
also be functions, and the trees have other kind of nodes (to deal with XML
attributes and records).

7

Definition 1. A value is a finite term produced by the following grammar:

v ::= c | (v1,v2)
ut

Now let us define the type and pattern algebra. For what concerns the contribu-
tion of this paper, namely the detection of useless sub-patterns, we do not need
capture variables. This simplification allows us to give a common definition for
types and patterns. However, we need an explicit way to localize sub-patterns.
To do this, we annotate relevant sub-patterns with marks ranged over by the
meta-variable ι. These marks can be thought as locations in the source code
kept during the parsing phase and used to display error messages and warnings.
Basic types are ranged over by the meta-variable b. A basic type denotes a set
of constants. We write (c : b) if the constant c belongs to the basic type b (the
same constant can belong to many basic types).

Definition 2. A pattern is a possibly infinite term produced by the following
grammar:

p ::= b | (p1, p2) | p1|||p2 | p1&&&p2 | ¬¬¬p | 0 | 1 | pι

with two additional requirements:

1. (regularity) the term must be a regular tree (only but a finite number of
different sub-terms);

2. (contractivity) any infinite branch must contain an infinite number of pair
nodes (p1, p2). ut

Where b ranges overs basic types and 0 and 1 respectively represent the Empty

and Any types. The infiniteness of patterns accounts for recursive types. Of
course these types must be machine representable, therefore we impose a con-
dition of regularity. The contractivity instead rules out meaningless terms such
as p =¬¬¬p (that is, an infinite unary tree where all nodes are labeled by¬¬¬). Both
conditions are standard when dealing with recursive types (e.g. see [AC93]).

Note that these patterns are more than enough to encode all the types we
used in Section 2: sequences can be encoded à la Lisp by pairs, pairs can also
be used to encode XML types, while regular expression types are encoded by
recursive patterns . So for instance if we do not consider attributes, the type

type Book = <book>[Title (Author+|Editor+) Price?]

can be encoded as Book =(‘book,(Title,X |Y)), X =(Author,X |(Price, ‘nil)|‘nil)
and Y = (Editor,Y |(Price, ‘nil)|‘nil), where ‘book and ‘nil are singleton (basic)
types. For more details about the encoding, also in the presence of attributes and
capture variables, see [BCF03].

8

We can now give the semantics for patterns. Intuitively, a pattern (without
capture variable) applied to a value can succeed or fail. Since we want to iden-
tify useless sub-patterns, we will directly introduce an instrumented semantics
which keeps track of sub-patterns that have indeed be used. Given a value v and
a pattern p, the result of matching v against p is a pair v/p = (ε, I) where ε = 0
denotes failure and ε = 1 denotes success, and I collects all the used ι marks.
The definition is given by the following equations:

c/b = (1,∅) if (c : b)
c/b = (0,∅) if ¬(c : b)
(v1,v2)/b = (0,∅)
c/(p1, p2) = (0,∅)
(v1,v2)/(p1, p2) = (ε, I1∪ I2) if v1/p1 = (1, I1),v2/p2 = (ε, I2)
(v1,v2)/(p1, p2) = (0, I1) if v1/p1 = (0, I1)
v/(p1|||p2) = (1, I1) if v/p1 = (1, I1)
v/(p1|||p2) = (ε, I1∪ I2) if v/p1 = (0, I1),v/p2 = (ε, I2)
v/(p1&&&p2) = (0, I1) if v/p1 = (0, I1)
v/(p1&&&p2) = (ε, I1∪ I2) if v/p1 = (1, I1),v/p2 = (ε2, I2)
v/¬¬¬p = (1− ε, I) if v/p = (ε, I)
v/0 = (0,∅)
v/1 = (1,∅)
v/pι = (0, I) if v/p = (0, I)
v/pι = (1, I∪{ι}) if v/p = (1, I)

There are no overlapping cases in this definition, and it is well-founded.
Indeed, the values in the right-hand side are smaller than or equal to the value in
the left-hand side; when they are equal (which happens for the patterns p1|||p2,
p1&&&p2 and pι), the size of the patterns get strictly smaller, where the size of a
pattern is defined by considering pair patterns as leaves (the size is finite because
of the contractivity condition).

This instrumented semantics for pattern matching captures marks of sub-
patterns which yield a successful match. A sequential traversal order has been
chosen: the left sub-pattern in (p1, p2), p1&&&p2, p1|||p2 is first considered, and
the right sub-pattern is considered only when needed. For the alternation p1|||p2,
this corresponds to a natural naive implementation of a first-match policy; for
(p1, p2) and p1&&&p2, this choice is arbitrary. In all cases, this sequential traversal
order is just a way to formalize what are the used sub-patterns - and thus where
to raise warnings for unused sub-patterns - and does not give any constraint on
the actual run-time implementation of pattern matching.

Since patterns do not have capture variable in this presentation, they can
be identified with types. We use the meta-variable t to range over types. The

9

semantics of a type t is the set of values defined as:

JtK = {v | v/t = (1, I)}

Note that the set of marks I is discarded in this definition. This semantics for
types induces a natural equivalence relation: t1 ' t2 ⇐⇒ Jt1K = Jt2K. From now
on, we will identify types modulo this equivalence. Efficient algorithms have
been developed to check inclusion between types; they obviously provide an
effective and efficient way to check equivalence as well.

The pattern matching operation is intended to be used as a basic block in
a programming language (such as CDuce). The type system for the language
provides a static type for the argument of the pattern matching, which is an upper
bound for the set of values that can actually flow to the pattern. The question we
are interested in is to determine whether some part of the pattern is left unused
for any value in this type.

Definition 3. Let t be a type and p a pattern. The set of used marks when match-
ing t against p is defined as:

I(t, p) =
[

v∈JtK,(ε,I)=v/p

I

In words, a marked subpattern of p is used with respect to t if there exists a
value v of t for which the marked subpattern is used when matching v against p.

We will now give an algorithm to compute this set I(t, p). First, we define a
rewriting relation ; over type/pattern pairs:

(t,(p1, p2)) ; (π1(t), p1)
(t,(p1, p2)) ; (π2(t∧∧∧ (p1,1)), p2)
(t, p1|||p2) ; (t, p1)
(t, p1|||p2) ; (t∧∧∧¬¬¬p1, p2)
(t, p1&&&p2) ; (t, p1)
(t, p1&&&p2) ; (t∧∧∧ p1, p2)
(t, pι) ; (t, p)
(t,¬¬¬p) ; (t, p)

The type operators πi() are defined by the equation: Jπi(t)K = {vi | (v1,v2)∈
JtK}. It has been shown in previous work [Fri04] how to compute these operators
effectively. The theory developed in this work also shows that, starting from a
pair (t, p), the set of pairs (t ′, p′) which are reachable under the reflexive and
transitive closure of ; is finite. This comes from the regularity of types and
patterns. This set is thus effectively computable. If we collect all the marks ι

such that (t ′, p′ι) is in this set, and such that some value in t ′ makes the pattern
p′ succeed, we obtain exactly the set I(t, p).

10

Theorem 1. Let t be a type and p a pattern. Then:

I(t, p) = {ι | (t, p) ?
; (t ′, p′ι), t ′∧∧∧ p′ 6' 0}

4 Discussion

4.1 Characteristics of the analysis

In the previous section we defined the set I(t, p) of all the pattern marks that are
used when matching the pattern p against values in t. We also showed that it is
possible to compute this set by saturating the pair (t, p) with a rewriting that is
assured to terminate by the regularity of patterns. Actually, the saturated set can
be computed quite efficiently, by using the very same algorithms implemented
in the CDuce type checker.

The computation of this set allows us to detect all the unused subparts of a
pattern. Indeed if we mark all the occurrences of p, then a mark ι of p is not in
I(t, p) if and only if for all values v of type t the sub-pattern marked by ι is not
used when matching v against p. In other words, there is no value in t for which
this sub-pattern is useful.

The “if and only if” states that our analysis is exact: we cannot refine it
further. Of course, as usual, it is just “locally” exact since its global precision
depends on the precision of the host type system in inferring the t at issue. For
instance, consider the expression:

match e with p -> e′

to check whether p is correct the type system will mark all the occurrences of p,
deduce the type t of e, and check whether all the marks of p are in I(t, p). Thus
the precision of the deduction of the correctness of p depends on the precision
of the type system in inferring t: a more precise inference for the type of e
might detect more errors in p, so the analysis is not globally complete, although
globally sound (a pattern detected as wrong is indeed wrong).

Local soundness and completeness were not easy to obtain. Our first at-
tempt to define correctness of sub-pattern was based on Empty substitutions.
According to that attempt a sub-pattern of a pattern p was considered wrong
with respect to an input type t if for every value v of t there was no difference
between matching v against p, or matching v against the same p in which the
sub-pattern is replaced by 0 (i.e. the Empty type). Now, such a characterization
captures all the examples we gave in Section 2 but it is not sound with respect
to all possible wrong patterns since it signals as wrong some sub-patterns that
should not be considered as such. The most trivial example is the pattern Int|||3:
for an input type 3 it signals the pattern Int as wrong. But that is a trivial case in

11

which the right hand side of | is contained in the left hand-side. A subtler exam-
ple where the two branches of the “|” pattern are independent (no inclusion) is
(Even,_)|(Int,Bool). With input type (Even,Bool)|(Odd,Int) the subpattern
(Even,_) is considered wrong according to Empty substitution characterization,
while the analysis of Section 3 correctly fingers as wrong the sub-pattern Bool.

It is important to stress that our definition of “used mark” hardcodes the in-
tuition we have about errors. We already stressed in the previous section that our
definitions reflect a sequential transversal order for the tree. So for instance if
the pattern Int|Int is used, our analysis fingers as wrong the rightmost occur-
rence of Int; an analysis signalling the leftmost occurrence as wrong would be
equally correct but, in our opinion, less intuitive. The same left to right analysis
is applied to intersections and pairs, as well.

Also we wondered whether to consider as wrong a pattern such as Int &

Int. Indeed, in our left to right perspective the rightmost Int is useless. Note
however that here it is not the matter of being not used, but of being redundant
(for instance, the Empty substitution argument does not apply). Thus it was clear
to us that redundancy must not considered as an error since it would go against a
common programming practise: programmers prefer to use redundant patterns
so as to reuse previous type definitions and make the code simpler and more
readable rather than to write the exact pattern that ensures the absence of any
redundancy: we must not force her/him to use this second option.

4.2 Extension to CDuce and other languages

The analysis developed in Section 3 applies directly to the cited languages based
on regular expression patterns. Xtatic and recent versions of XDuce, however,
require a slight modification to the definition of used sub-patterns since they use
a non-deterministic semantics for the | pattern. This is very simple as it suffices
to replace the two cases for v/(p1|||p2) by

v/(p1|||p2) = (ε1 || ε2, I1∪ I2) if v/pi = (εi, Ii)

where || denotes the logical or. The algorithm to compute used sub-patterns is
simple to adapt as well. The rewriting rules for the | pattern are changed to:

(t, p1|||p2) ; (t, p1)
(t, p1|||p2) ; (t, p2)

For what concerns the capture variables, we have to modify the definition of
matching, since v/p must not only return a zero/one result but, in case of suc-
cess, it also must return a substitution for the variables of the pattern. However,
the analysis of Section 3 needs no change, since capture variables technically

12

behaves the same as intersections with the type Any, as such they do not affect
the analysis.

What it really remains to do in order to embed our analysis in the various
languages at issue is to extend its definition to the other patterns present in these
languages (for instance, in CDuce there also is a pattern for records), and to
customize the typing rules of the languages so that they use the analysis. Let
us discuss this last point for CDuce. We already hinted at how the typing rule
for match expressions must be modified for taking into account the analysis.
Formally this corresponds to having the following typing rule:

(for ti ≡ t ***p1 +++\ . . . ***pi−1+++)
t ≤ ***p1 +++ | . . . | *** pn +++ I(t1, pi) = (ε, Ii) ∆′i = marks(pi)\ Ii

Γ ` e : t ∆ Γ,(ti/pi) ` ei : si ∆i

Γ ` match e with p1Þe1 | . . . | pnÞen :
S
{i|ti 6'Empty} si

S
i=1...n ∆i∪∆′i∪∆

***pi+++ denotes the exact type of all values that successfully match pi (namely
***p+++ = {v | v/p succeeds}), while Γ ` e : t ∆ means that, in the type environ-
ment Γ, e has type t and the labels in ∆ denote unused sub-patterns in e; hence
∆ is the error set computed by the type analysis (an expression is correct if the
inferred error set is empty). The condition t ≤ ***p1 +++ | . . . | *** pn+++ ensures that
patterns are exhaustive with respect to all possible values e may produce. This
ensures that well-typed terms never get stuck at run-time (at least one branch
matches). (ti/pi) denotes the set of type assignments of pi variables, computed
by matching the pattern against the type ti (see [FCB02]). Each ti is computed by
taking into account the first-match policy, so the ei is typed in an environment
in which each pi is matched over values that cannot be matched by previous
branches. Incorrect sub-patterns in pi’s are computed by subtracting from all
marks of each pi, denoted by marks(pi), the set of used patterns I(ti, pi).

Error mining for iterators is not so straightforward, due to typing based on
case analysis over the argument type. For example, if e is proved to have type
[S|U], then the with part of

transform e with p -> e′

is typed twice, once under the assumption that the argument has type S and
once under the assumption that the type for the argument is U , thus inferring
two types TS and TU , together with two errors sets ∆S and ∆U . The final inferred
type is [TS|TU], while the final errors set is ∆S ∩∆U . This is because a sub-
pattern in p is incorrect (unused) if it is so for both alternatives S and U (or,
equivalently, it is correct if it is correct (used) with respect to at least one alter-
native among S and U). This technique was introduced and proved to be correct
in [Col04,CGMS04]. Thus the complete formalization of error mining rules for

13

iterators such as transform, follows those established for the XQuery iterator
for in the cited papers, relying on the technique of Section 3 to infer incorrect
fragments of patterns.

A similar technique must be used for overloaded functions: in CDuce an
overloaded function is a function whose type is an intersection of arrows and the
body of the function is typed once for each type in the intersection; of course
are wrong only those occurrences of patterns that result unused in all these type
deductions; once more an intersection applies. To implement this just a slight
modification of the original typing rule is required, since we only need to add
error sets to judgements and opportunely combine them in a way that strictly
resembles error mining for iterators:

Γ,(x : ti),(f :
VVV

i=1..n ti →→→ si) ` e : si ∆i i = 1..n

Γ ` fun f (t1 →→→ s1; . . . ; tn →→→ sn)(x) = e : (
VVV

i=1..n ti →→→ si)
T

i=1..n ∆i

The extension of other rules is even simpler, and omitted for space reasons.
It is worth observing that the presented error mining technique preserves the

typing discipline in the hosting language, since error-mining depends on type-
inference but not viceversa. In other words, the technique we have described is
not intrusive and can be seen as an add-on of the hosting type system. However,
in order to make error-mining more precise, that is to increase the number of
errors detected at static time, one may consider to change the type discipline of
the language. This may be needed when the type system infers a not-empty se-
quence type for expressions that instead always evaluate to the empty sequence.
This can raise from an interaction between / and transform: for an example
see [Col04] where the problem has been solved for XQuery. At this stage, we
did not investigate this problem in the context of languages based on regular
expression patterns, and we postpone this to future work.

Acknowledgments. This work was partially supported by the RNTL project
"GraphDuce" and by the ACI project "Transformation Languages for XML:
Logics and Applications".

14

References

[AC93] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions
on Programming Languages and Systems, 15(4), September 1993.

[BCF03] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-friendly general purpose
language. In ICFP ’03, 8th ACM International Conference on Functional Program-
ming, pages 51–63, Uppsala, Sweden, 2003. ACM Press.

[BCM05] V. Benzaken, G. Castagna, and C. Miachon. A full pattern-based paradigm for XML
query processing. In PADL 05, 7th International Symposium on Practical Aspects
of Declarative Languages, number 3350 in LNCS, pages 235–252. Springer, January
2005.

[BFS04] Niklas Broberg, Andreas Farre, and Josef Svenningsson. Regular expression patterns.
In ICFP ’04: Proceedings of the ninth ACM SIGPLAN international conference on
Functional programming, pages 67–78, New York, NY, USA, 2004. ACM Press.

[BMS05] Gavin Bierman, Erik Meijer, and Wolfram Schulte. The essence of data access in Cω.
In ECOOP 2005, LNCS, 2005. To appear.

[CGMS04] Dario Colazzo, Giorgio Ghelli, Paolo Manghi, and Carlo Sartiani. Types for Path
Correctness for XML Queries. In Proceedings of the ACM International Conference
on Functional Programming (ICFP), Snowbird, Utah, USA, 2004.

[Col04] Dario Colazzo. Path Correctness for XML Queries: Characterization and Static Type
Checking. PhD thesis, Dipartimento di Informatica, Università di Pisa, 2004.

[DFF+05] Denise Draper, Peter Fankhauser, Mary Fernandez, Ashok Malhotra, Kristoffer Rose,
Michael Rys, Jérôme Siméon, and Philip Wadler. XQuery 1.0 and XPath 2.0 Formal
Semantics. Technical report, World Wide Web Consortium, February 2005. W3C
Working Draft.

[FCB02] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic Subtyping. In
Proceedings, Seventeenth Annual IEEE Symposium on Logic in Computer Science,
pages 137–146. IEEE Computer Society Press, 2002.

[Fri04] Alain Frisch. Théorie, conception et réalisation d’un langage de programmation fonc-
tionnel adapté à XML. PhD thesis, Université Paris 7, December 2004.

[GP03] Vladimir Gapeyev and Benjamin C. Pierce. Regular object types. In European Con-
ference on Object-Oriented Programming (ECOOP), Darmstadt, Germany, 2003. A
preliminary version was presented at FOOL ’03.

[Hos00] Haruo Hosoya. Regular Expression Types for XML. PhD thesis, The University of
Tokyo, Japan, December 2000.

[HP00] Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML processing lan-
guage. In Proceedings of Third International Workshop on the Web and Databases
(WebDB2000), 2000.

[HP01] Haruo Hosoya and Benjamin C. Pierce. Regular expression pattern matching for
XML. In The 25th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2001.

[LS04] K. Zhuo Ming Lu and M. Sulzmann. An implementation of subtyping among reg-
ular expression types. In Proc. of APLAS’04, volume 3302 of LNCS, pages 57–73.
Springer-Verlag, 2004.

[OAC+04] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov,
M. Schinz, E. Stenman, and M. Zenger. An overview of the Scala programming
language. Technical Report IC/2004/64, École Polytechnique Fédérale de Lausanne,
2004. Latest version at http://scala.epfl.ch.

15

