
A Gentle Introduction to Semantic Subtyping

Giuseppe Castagna
CNRS

École Normale Supérieure
Paris, France

Alain Frisch
INRIA

Rocquencourt
France

ABSTRACT
Subtyping relations are usually defined either syntactically by a for-
mal system or semantically by an interpretation of types into an un-
typed denotational model. In this work we show step by step how
to define a subtyping relation semantically in the presence of func-
tional types and dynamic dispatch on types, without the complex-
ity of denotational models, and how to derive a complete subtyping
algorithm. It also provides a recipe to add set-theoretic union, in-
tersection, and negation types to your favourite language.

The presentation is voluntarily kept informal and discursive and
the technical details are reduced to a minimum since we rather in-
sist on the motivations, the intuition, and the guidelines to apply the
approach.
Categories and Subject Descriptors: D.3.3 [Programming Lan-
guages]: Language Constructs and Features — Data types and struc-
ture; F.3.3 [Logics and Meanings of Programs]: Studies of Program
Constructs — Type structure; F.4.1 [Mathematical Logic and For-
mal Languages]: Mathematical Logic — Lambda calculus and re-
lated systems
General Terms: Language, Theory.
Keywords: Typing; Subtyping; Intersection, Union, and Negation
Types.

1. Introduction
Many recent type systems rely on a subtyping relation. Its def-

inition generally depends on the type algebra, and on its intended
use. We can distinguish two main approaches for defining subtyp-
ing: the syntactic approach and the semantic one. The syntactic
approach—by far the more used—consists in defining the subtyp-
ing relation by axiomatising it in a formal system (a set of induc-
tive or coinductive rules); in the semantic approach (for instance,
[2, 10]), instead, one starts with a model of the language and an in-
terpretation of types as subsets of the model, then defines the sub-
typing relation as the inclusion of denoted sets, and, finally, when
the relation is decidable, derives a subtyping algorithm from the
semantic definition.

The semantic approach has several advantages (we discuss them
later on) but it is also more constraining. Finding an interpretation

Joint ICALP/PPDP keynote talk. A four pages abstract of this work is in-
cluded in the proceedings of ICALP 2005, LNCS n. 3580, Springer.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’05, July 11–13, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-090-6/05/0007 ...$5.00.

in which types can be interpreted as subsets of a model may be a
hard task. A solution to this problem was given by Haruo Hosoya
and Benjamin Pierce [18, 17, 16] with the work on XDuce. The key
idea is that in order to define the subtyping relation semantically
one does not need to start from a model of the whole language: a
model of the types suffices. In particular Hosoya and Pierce take
as model of types the set of values of the language. Their notion
of model cannot capture functional values. On the one hand, the
resulting type system is poor since it lacks function types. On the
other hand, it manages to integrate union, product and recursive
types and still keep the presentation of the subtyping relation and
of the whole type system quite simple.

In [12, 11], together with Véronique Benzaken, we extended the
work on XDuce and reframed it in a more general setting: we show
a technique to define semantic subtyping in the presence of a rich
type system including function types, but also arbitrary boolean
combinations (union, intersection, and negation types) and in the
presence of lately bound overloaded functions and type-based pat-
tern matching. The aim of [12, 11] was to provide a theoretical
foundation on the top of which to build the language CDuce [6], an
XML-oriented transformation language. This motivation needed
a rather heavy technical development that concealed a side—but
important—contribution of the work, namely a generic and uni-
form technique (or rather, a cookbook of techniques) to define se-
mantic subtyping when straightforward set-theoretic interpretation
does not work, in particular for arrow types. Here we concentrate
on this second aspect of the work: we get rid of many features
(e.g. patterns and pattern matching, full-fledged overloading, pat-
tern variable type inference,. . .), skip many technical details, and
focus on the basic intuition to gradually introduce our approach.
This results in a presentation along which we explain the reader
how to take her/his favourite set of type constructors (e.g. arrows,
but also records, lists, pointers, channels, etc.) and add to it a com-
plete set of boolean combinators: union, intersection and negation
types.

The description of a general technique to extend semantic sub-
typing to general types systems with arrow and complete boolean
combinator types is just one way to read our work, and it is the one
we decided to emphasise in this presentation. However it is worth
mentioning that there exist at least two other readings for the results
and techniques presented here.

A first alternative reading is to consider this work as a research
on the definition of a general purpose higher-order XML transfor-
mation language: indeed, this was the initial motivation of [12, 11]
and the theoretical work done there constitutes the fundamental ba-
sis for the definition and the implementation of the XML transfor-
mation language CDuce.

A second way of understanding this work is as a quest for the

generalisation of lately bound overloaded functions to intersections
types. The intuition that overloaded functions should be typed by
intersection types was always felt but never fully formalised or un-
derstood. On the one hand we had the longstanding research on
intersection types with the seminal works by the Turin research
group on typed lambda calculus [5, 9]. However functions with
intersection types had a uniform behaviour, in the sense that even if
they worked on arguments of different types they always executed
the same code on all of these types1. So functions with intersec-
tions types looked closer to parametric polymorphism (in which
we enumerate the possible domains) rather than overloaded func-
tions which are able to discriminate on the type of the argument and
execute a different code for each different type. On the other hand
there was the research on overloaded functions as used in program-
ming languages which accounted for functions formed by different
pieces of code selected according to the type of the argument the
function is applied to. However, even if the types of these func-
tions are apparently close to intersection types, they never had the
set theoretic intuition of intersections. So for example in the λ&-
calculus [7] overloaded functions have types that are characterised
by the same subtyping relation as intersection types, but they dif-
fer from the latter by the need of special formation rules that have
no reasonable counterpart in intersection types. The overloaded
functions defined here and, even more, those defined in [12] fi-
nally reconcile the two approaches: they are typed by intersection
types (with a classical/set-theoretic interpretation) and their defini-
tions may intermingle code shared by all possible input types with
pieces of code that are specific to only some particular input types.
Therefore they nicely integrate the two styles of programming.

Finally it is important to stress that although here we deploy
our construction for a λ-calculus with higher-order functions, the
technique is quite general and can be used mostly unchanged for
quite different paradigms, as for instance it is done in [8] for the
π-calculus (we discuss it at the end of Section 3.4).

In what follows we will privilege clarity over exhaustiveness. There-
fore even though the presentation is correct some technical details
are only partially covered: all such gaps can be filled by referring
to the technical development of [12, 13, 11].

Our hope is that this work will provide the reader with enough in-
tuition and a detailed roadmap to decide whether it is possible/inte-
resting to endow her/his favourite language with a set-theoretically
defined subtyping relation.

2. The intuition
When dealing with syntactic subtyping one usually proceeds as

follows. First, one defines a language, then, somewhat indepen-
dently, the set of (syntactic) types and a subtyping relation on this
set. This relation is defined axiomatically, in an inductive (or coin-
ductive in case of recursive types) way. The type system, consisting
of the set of types and of the subtyping relation, is coupled to the
language by a typing relation, usually defined via some typing rules
by induction on the terms of the language. The meaning of types
is only given by the rules defining the subtyping and the typing
relations.

The semantic subtyping approach described here diverges from
the above only for the definition of the subtyping relation. Instead
of using a set of rules, this relation is defined semantically: we do
it by defining a set-theoretic model of the types and by stating that
one type is subtype of another if the interpretation of the former is
a subset of the interpretation of the latter. As for syntactic subtyp-
1A notable exception to this is John Reynolds work on the coherent over-
loading and the language Forsythe [19, 20].

ing, the definition is parametric in the set of base types and their
subtyping relation (in our case, their interpretation).

2.1 Advantages of semantic subtyping
The semantic approach is more technical and constraining, and

this may explain why it has obtained less attention than syntactic
subtyping. However it presents several advantages:

1. When type constructors have a natural interpretation in the model,
the subtyping relation is by definition complete with respect to
its intuitive interpretation as set inclusion: when t ≤ s does not
hold, it is possible to exhibit an element of the model which is
in the interpretation of t and not of s, even in presence of ar-
row types (this property is used in CDuce to return informative
error messages to the programmer); in the syntactic approach
one can just say that the formal system does not prove t ≤ s,
and there may be no clear criterion to assert that some mean-
ingful additional rules would not allow to prove it. This argu-
ment is particularly important with a rich type algebra, where
type constructors interact in non trivial ways; for instance, when
considering arrow, intersection and union types, one must take
into account many distributivity relations, such as, for example,
(t1 ∨ t2)→ s ' (t1 → s)∧ (t2 → s). Forgetting any of these rules
yields a type system that, although sound, does not match (that
is, it is not complete with respect to) the intuitive semantics of
types.

2. In the syntactic approach deriving a subtyping algorithm re-
quires a strong intuition of the relation defined by the formal
system, while in the semantic approach it is a simple matter of
“arithmetic”: it simply suffices to use the interpretation of types
and well-know boolean algebra laws to decompose subtyping
on simpler types (as we show in Section 3.2). Furthermore, as
most of the formal effort is done with the semantic definition
of subtyping, studying variations of the algorithm (e.g., optimi-
sations or different rules) turns out to be much simpler (this is
common practise in database theory where, for example, opti-
misations are derived directly from the algebraic model of data).

3. While the syntactic approach requires tedious and error-prone
proofs of formal properties, in the semantic approach many of
them come for free: for instance, the transitivity of the subtyp-
ing relation is trivial (as set-containment is transitive), and this
makes proofs such as cut elimination or transitivity admissibil-
ity pointless.

Although these properties seem quite appealing, the technical de-
tails of the approach hinder its development: in the semantic ap-
proach, one must be very careful not to introduce any circularity
in the definitions. For instance, if the type system depends on the
subtyping relation—as this is generally the case—one cannot use it
to define the semantic interpretation which must thus be untyped;
also, usually the model corresponds to an untyped denotational se-
mantics, and types are interpreted as ideals and this precludes the
set-theoretic interpretation of negative types (as the complement of
ideals is not an ideal). For these reasons all the semantic approaches
to subtyping previous to our work presented some limitations: no
higher-order functions, no complement types, and so on. The main
contribution of our work is the development of a formal framework
that overcomes these limitations.

EXCURSUS. The reader should not confuse our re-
search with the long-standing research on set-theoretic
models of subtyping. In that case one starts from a
syntactically (i.e. axiomatically) defined subtyping re-
lation and seeks a set-theoretic model where this rela-

tion is interpreted as inclusion. Our approach is the op-
posite: instead of starting from a subtyping relation to
arrive to a model, we start by defining a model in order
to arrive to a subtyping relation. Thus in our approach
types have a strong substance even before introducing
the typing relation.

2.2 A model of types
To define semantic subtyping we need a set-theoretic model of

types. The source of most of (if not all) the problems comes from
the fact that this model is usually defined by starting from a model
of the terms of the language. That is, we consider a denotational
interpretation function that maps each term of the language into
an element of a semantic domain and we use this interpretation to
define the interpretation of the types (typically—but not necessary,
e.g. PER models [4]—as the image of the interpretation of all terms
of a given type). If we consider functional types then in order to
interpret functional term application we have to interpret the duality
of functions as terms and as functions on terms. This yields the
need to solve complicated recursive domain equations that hardly
combines with a set-theoretic interpretation of types, whence the
introduction of restrictions in the definition of semantic subtyping
(e.g. no function types, no negation types, etc . . .).

Note however that in order to define semantic subtyping all we
need is a set-theoretic model of types. The construction works even
if we do not have a model of terms. To push it to the extreme, in or-
der to define subtyping we do not need terms at all, since we could
imagine to define type inclusion for types independently from the
language we want to use these types for. More plainly, the defini-
tion of a semantic subtyping relation needs neither an interpretation
for applications (that is an applicative model) nor, thus, the solution
of complicated domain equations.

The key idea to generalise semantic subtyping is then to disso-
ciate the model of types from the model of terms and define the
former independently from the latter. In other words, the inter-
pretation of types must not forcedly be based on, or related to an
interpretation of terms (and actually in the some concrete examples
we will give we interpret types in structures that cannot be used for
an interpretation of terms), and as a matter of fact we do not need
an interpretation of terms even to exist for the semantic subtyping
construction to go through2.

2.3 Types as sets of values
Nevertheless, to ensure type safety (i.e. well-typed programs can-

not go wrong) the meaning of types has to be somewhat correlated
with the language. A classical solution, that belongs to the types
folklore3 is to interpret types as sets of values, that is, as the re-
sults of well-typed computations in the language. More formally,
the values of a typed language are all the terms that are well-typed,
closed, and in normal form. So the idea is that in order to provide an
interpretation of types we do not need an interpretation of all terms
of the language (or of just the well-typed ones): the interpretation
of the values of the language suffices to define an interpretation of
types. This is much an easier task: since a closed application usu-
ally denotes a redex, then by restricting to the sole values we avoid
2As Pierre-Louis Curien suggested, the construction we propose is a pied
de nez to (it cocks a snook at) denotational semantics, as it uses a seman-
tic construction to define a language for which, possibly, no denotational
semantics is known.
3A survey on the “Types” mailing list traces this solution back to Bertrand
Russell and Alfred Whitehead’s Principia Mathematica. Closer to our in-
terests it seems that the idea independently appeared in the late sixties early
seventies and later back again in seminal works by Roger Hindley, Per
Martin-Löf, Ed Lowry, John Reynolds, Niklaus Wirth and probably others
(many thanks to the many “typers” who answered to our survey).

the need to interpret application and, therefore, also the need to
solve complicated domain equations. This is the solution adopted
by XDuce, where values are XML documents and types are sets of
documents (more precisely, regular languages of documents).

But if we consider a language with arrow types, that is a language
with higher order functions, then the applications come back again:
arrow types must be interpreted as sets of function values, that is,
as sets of well-typed closed lambda abstractions, and applications
may occur in the body of these abstractions. Here is where XDuce
stops and it is the reason why it does not include arrow types.

2.4 A circularity to break
Introducing arrow types is then problematic because it slips ap-

plications back again in the interpretation of types. However this
does not mean that we need a semantic interpretation for applica-
tion, it just implies that we must define how application is typed.
Indeed functional values are well-typed lambda abstractions, so to
interpret functional types we must be able to type lambda abstrac-
tions and in particular to type the applications that occur in their
body. Now this is not an easy task in our context: in the absence
of higher order functions the set of values of type constructors such
as products or records can be inductively defined from basic types
without resorting to any typing relation (this is why the Hosoya
Pierce approach works smoothly). With the arrow type constructor,
instead, this can be done only by using a typing relation, and this
yields to the circularity we hinted at in the introduction and that
is shown in Figure 1: in order to define the subtyping relation we
need an interpretation of the types of the language; for this we have
to define which are the values of an arrow type; this needs that we
define the typing relation for applications, which in turns needs the
definition of the subtyping relation.

Typing
relationvalues

Well−typed

Subtyping
relation

Figure 1: Circularity

Thus, if we want to define
the semantic subtyping of ar-
row types we must find a way
the avoid this circularity. The
simplest way to avoid it is to
break it, and the development
we did so far clearly suggests
where to break it. We always
said that to define (seman-
tic) subtyping we must have a
model of types; it is also clear
that the typing relation must
use subtyping; on the contrary
it is not strictly necessary for
our model to be based on the
interpretation of values, this is

just convenient as it ties the types with the language the types are
intended for. This is therefore the weakest link and we can break it.
So the idea is to start from a model (of the types) defined indepen-
dently (but not too much) from the language the types are intended
for (and therefore independently from its values), and then from
that define the rest: subtyping, typing, set of values. We will then
show how to relate the initial model to the obtained language and
recover the initial “types as set of values” interpretation: namely,
we will “close the circle”.

2.5 Set-theoretic models
Let us then show more in details how we shall proceed. We do

not need to define a particular language, the definition of types will
suffice. Therefore we start from the following syntax for types:

t ::= 0 | 1 | t →→→ t | t××× t | ¬¬¬t | t∨∨∨ t | t∧∧∧ t

where 0 and 1 respectively correspond to the empty and univer-
sal types (these are sometimes denoted by the pair ⊥, > or Bot-
tom, Top). For the sake of generality, we also consider recursive
types. There are several way to formalise them. We can: (1) in-
troduce them with explicit binders µx.t[x], or (2) define them as
regular trees generated by the grammar above, or (3) define them
as the solution of systems of equations. In all cases, we need a
contractivity constraint to rule out meaningless expressions such as
t∧∧∧ (t∧∧∧ (t∧∧∧ (. . .))). Namely, we require that every infinite branch
has infinitely many occurrences of the ××× or of the →→→ construc-
tors [3]. The formal development is still sound for a system with-
out recursive types, so the reader can follow it by having in mind
only inductive types. However, most of the machinery described
here is motivated by the presence of recursive types. For instance,
the existence of non-universal models (see § 3.1) and thus the ex-
istence of different semantic subtyping relations, depends on the
joint presence of recursive and arrow types.

The second step is to define precisely what a set-theoretic model
for these types is. As Hindley and Longo [14] give some general
conditions that characterise models of λ-calculus, so here we want
to give the conditions that an interpretation function must satisfy
in order to characterise a set-theoretic model of our types. So let
T denote the set of (regular and contractive) types generated by the
grammar above, D some domain, and J K an interpretation function
from T to P(D). The conditions that J K must satisfy to define a
set-theoretic model are mostly straightforward, namely:

1. Jt1∨∨∨ t2K = Jt1K∪ Jt2K;
2. Jt1∧∧∧ t2K = Jt1K∩ Jt2K;
3. J¬¬¬tK = D\JtK;
4. J1K = D ;
5. J0K = ∅;
6. Jt××× sK = JtK× JsK;
7∗. Jt →→→ sK = ??? .

The first six conditions convey the intuition that our model is set
theoretic: so the intersection of types must be interpreted as set
intersection, the union of types as set-theoretic union and so on
(the sixth condition requires some closure properties on D and the
definition of embedding functions, but we prefer not to enter in
such a level of detail at this point of our presentation and delay
detailed presentation to the end of this work). But the definition
is not complete yet as we still have to establish the seventh condi-
tion (highlighted by a ∗) that constraints the interpretation of arrow
types. This condition is more complicated. Again it must con-
vey the intuition that the interpretation is set theoretic, but while
the first six conditions are language independent, this conditions
strongly depends on the language and in particular on the kind of
functions we want to implement in our language. We give detailed
examples about this in [13]. The set theoretic intuition we have of
function spaces is that a function is of type t →→→ s if whenever ap-
plied to a value of type t it returns a result of type s. Intuitively,
if we interpret functions as binary relations on D , then Jt →→→ sK
is the set of binary relations in which if the first projection is in
(the interpretation of) t then the second projection is in s, namely
{ f ⊆D2 | ∀(d1,d2) ∈ f . d1 ∈ JtK⇒ d2 ∈ JsK }. Note that this set is
equivalent to P(JtK× JsK), where the overline denotes set comple-
ment. If the language is expressive enough, we can do as if every
binary relation in this set was an element of Jt →→→ sK; thus, we would
like to say that the seventh condition is:

Jt →→→ sK = P(JtK× JsK) (1)

But this is completely meaningless. First, technically, this would
imply that P(D2) ⊆ D , which is impossible for cardinality rea-

sons. Also, remember that we want eventually to re-interpret types
as sets of values of the language, and functions in the language are
not binary relations (they are syntactic objects). However what re-
ally matters is not the exact mathematical nature of the elements of
D , but only the relations they create between types. The idea then
is to do as if the above condition held.

Since this point is central to our model, let us explain it differ-
ently. Recall that the only reason why we want to accurately state
what set-theoretic model of types is, is to precisely define the sub-
typing relation for syntactic types. In other words, we do not define
an interpretation of types in order to formally and mathematically
state what the syntactic types mean but, more simply, we define it in
order to state how they are related. So, even if we would like to say
that a type t →→→ s must be interpreted in the model as P(JtK× JsK)
as stated by (1), for what it concerns the goal we are aiming at, it
is enough to require that a model must interpret functional types so
as the induced subtyping relation is the same as the one the condi-
tion (1) would induce. So we will consider as being “set-theoretic”
every interpretation function J K such that

Jt1 →→→ s1K ⊆ Jt2 →→→ s2K ⇐⇒ P(Jt1K× Js1K) ⊆ P(Jt2K× Js2K)

and similarly for any boolean combination of arrow types.
Formally, we associate to J K an extensional interpretation E J K

that behaves as J K except for arrow types, for which we use the
condition above as definition:

E Jt →→→ sK = P(JtK× JsK)

More precisely we have the following definition

DEFINITION 2.1. Let J K : T → P(D) be an interpretation
function. The extensional interpretation of J K is the function E J K :
T → P(D2 +P(D2)) defined as:
E J0K = ∅ E J1K = D2 +P(D2)
E Jt1∨∨∨ t2K = E Jt1K∪E Jt2K E Jt1∧∧∧ t2K = E Jt1K∩E Jt2K
E J¬¬¬tK = E J1K\E JtK E Jt××× sK = JtK× JsK
E Jt →→→ sK = P(JtK× JsK) 2

Note that we use J K in the right-hand side for the →→→ case, that
is, we only re-interpret top-level arrow types. Now we can express
the fact that J K behaves (from the point of view of subtyping) as
if functions were binary relations. This is obtained by writing the
missing seventh condition, not in the form of 7∗, but as follows:

7. JtK = ∅ ⇐⇒ E JtK = ∅

or, equivalently, Jt1K ⊆ Jt2K ⇐⇒ E Jt1K ⊆ E Jt2K.4
To put it otherwise, if we wanted an interpretation J K of the types

that were faithful with respect to the semantics of the language,
then we should require for all t that JtK = E JtK. But for cardinality
reasons this is impossible in a set-theoretic framework. However
we do not need such a strong constraint on the definition of J K
since all we ask to J K is to characterise the containment of types,
and to that end it suffices to characterise the zeros of J K. Indeed

s ≤ t ⇐⇒ JsK ⊆ JtK ⇐⇒ JsK∩ JtK = ∅ ⇐⇒ Js∧∧∧¬¬¬tK = ∅

So instead of asking that J K and E J K coincide on all points, we
require a weaker constraint, namely that they have the same zeros:

JtK = ∅ ⇐⇒ E JtK = ∅

We said that the above seventh condition (actually, the defini-
tion of the extensional interpretation) depends on the language the
4Indeed, Jt1K ⊆ Jt2K ⇐⇒ Jt1K \ Jt2K = ∅ ⇐⇒ Jt1∧∧∧¬¬¬t2K = ∅ ⇐⇒
E Jt1∧∧∧¬¬¬t2K = ∅ ⇐⇒ E Jt1K \E Jt2K = ∅ ⇐⇒ E Jt1K ⊆ E Jt2K.

type system is intended for. We show in [13] different variations of
this conditions to match different sets of definable transformations.
However, we can already see that the condition above accounts for
languages in which functions possibly are

1. Non-deterministic: since the condition does not prevent the
interpretation of a function space to contain a relation with
two pairs (d,d1) and (d,d2) with d1 6= d2.

2. Non-terminating: since the condition does not force a rela-
tion in Jt →→→ sK to have as first projection the whole JtK. A
different reason for this is that every arrow type is inhabited
(note indeed that the empty set belongs to the interpretation
of every arrow type), so in particular are all the types of the
form t →→→ 0; now, all the functions in such types must be
always non-terminating on their domain (if they returned a
value this would inhabit 0).

3. Overloaded: this is subtler than the two previous cases as
it is a consequence of the fact that condition does not force
J(t1∨∨∨ t2)→→→ (s1∧∧∧ s2)K to be equal to J(t1 →→→ s1)∧∧∧ (t2 →→→ s2)K,
but just the former to be included in the latter. Imagine in-
deed that the language at issue does not allow the program-
mer to define overloaded functions. So it is not possible
to define functions that distinguish the types of their argu-
ment, and in particular to have a function that when applied
to an argument of type t1 returns a result in s1 while re-
turns a (possibly different) s2 result for t2 arguments. There-
fore the only functions in (t1 →→→ s1)∧∧∧ (t2 →→→ s2) are those in
(t1∨∨∨ t2)→→→ (s1∧∧∧ s2).

2.6 Bootstrapping the definition
Now that we have defined what a set-theoretic model for our

types is, we can choose a particular one that we use to define the
rest of the system. Suppose that there exists at least one pair (D ,JK)
that satisfies the conditions of set-theoretic model, and choose any
of them, no matter the one. Let us call this model the bootstrap
model, and denote it by (B,JK

B
).

This bootstrap model defines a particular subtyping relation on
our set of types T :

s ≤B t ⇐⇒ JsKB ⊆ JtKB

We can then pick any language that uses the types in T (and whose
semantics conforms with the intuition underlying the model condi-
tion on function types), define its typing rules and use in the sub-
sumption rule the subtyping relation ≤B we have just defined. We
write Γ `B e : t for the typing judgement of the language.

We have just defined a language L whose subtyping relation is
defined set-theoretically. Of course for the time being this language
is just a virtual one but let us use it to outline how to close circu-
larity (in Section 3.3 we will show a concrete example of such a
language).

2.7 Closing the circle
So, what are the relations between the bootstrap model and the

obtained virtual language L ? And in particular, what is the relation
between the bootstrap model and the values of this language? Have
we lost all the intuition underlying the “types as sets of values”
interpretation?

To answer all these questions, consider the abstract language L

we obtained and in particular all its values, that is all its well-typed
closed terms in normal form. This induces a new interpretation
of the types T . More precisely this induces the interpretation
(V ,JKV) where V is the set of all values of the obtained language
and JK

V
is the mapping defined as JtK

V
= {v ∈ V | `B v : t}.

If the typing relation for L is defined appropriately5, it turns
out that this interpretation satisfies the conditions of being a set-
theoretic model, therefore we can use it to define a new subtyping
relation on T :

s ≤V t ⇐⇒ JsK
V

⊆ JtK
V

We could imagine to start again the process, that is to use this sub-
typing relation in the subsumption rule of our language, and use
the resulting sets of values to define yet another subtyping relation
and so on. But this is not necessary as the process has already con-
verged. This is stated by one of the central results of our work:

s ≤B t ⇐⇒ s ≤V t

that is, the subtyping relation induced by the bootstrap model al-
ready defines the subtyping relation of the “types as sets of values”
model of the resulting calculus. We have closed the circle we broke.

3. A taste of formalism
In the next three sections we introduce a concrete bootstrap model

and a concrete programming language and use them to put our tech-
nique at work.

3.1 Universal model
We said that the model condition we imposed on the interpre-

tation of arrow types relaxes the condition (1) that for cardinality
reasons no model can satisfy. But have we relaxed it enough? In
other words, does there exist a model, that is a pair (D ,JK), that
satisfies all the seven conditions? The answer is positive, as we can
exhibit the following model.

Let U be the least solution of the equation X = X2 +Pf (X2),
where Pf (X) denotes the finite powerset of X . Note that the ele-
ments of U are finitely generated by the following abstract syntax:

d : := (d1,d2) | {(d1,d′
1), . . . ,(dn,d′

n)} (n≥0)

Then define the following interpretation function J K
U

: T →P(U):

- J0KU = ∅;
- J1KU = U ;
- J¬¬¬tKU = U \JtKU ;
- Js∨∨∨ tK

U
= JsK

U
∪ JtK

U
;

- Js∧∧∧ tK
U

= JsK
U

∩ JtK
U

;
- Js××× tK

U
= {(d1,d2) | d1 ∈ JsK

U
,d2 ∈ JtK

U
};

- Jt →→→ sK
U

= {{(d1,d′
1), . . .,(dn,d′

n)} | di ∈ JtK
U
⇒ d′

i ∈ JsK
U
}.

Note that Js××× tKU = JsKU × JtKU , while for arrow types we have
Jt →→→ sKU = Pf (JtKU × JsKU) (note the finiteness in Pf).

It is quite easy to verify (by induction on the elements of U)
that these relations indeed define a (unique) function T →P(U),
and that (U ,J K

U
) satisfies the seven conditions that characterise

a model (simply note that Pf (X) = ∅ ⇐⇒ P(X) = ∅).
So, now we know that a model exists. Actually in [11] it is shown

that there exist several different models and that they induce differ-
ent subtyping relations6.

To define the type system, we need to choose a specific model.
Any model would produce a sound type system and allow us to
5By “appropriately” we mean that it must comply with the intuitive be-
haviour that we had in mind when we introduced the extensional interpre-
tation. In particular, it must be such that ` v : t ⇐⇒6` v :¬¬¬t.
6For instance, let us consider the recursive type t = (0 →→→ 1)∧∧∧¬¬¬(t →→→ 0).
In the model we have just built this type is empty, that is t ≤U 0, but it is
possible to build a different model D such that t 6≤D 0.

close the circle. The algorithm to compute the subtyping relation,
however, does depend on the choice of the model. The model U is
a natural choice because it is universal, in the sense that it induces
the largest possible subtyping relation; formally, for every model
D and types t1,t2 ∈ T :

t1 ≤D t2 ⇒ t1 ≤U t2
Finally note that U is too poor a structure to be used as the target

for interpreting any serious programming language, as it cannot ex-
press but finite functions. Nevertheless it is enough for interpreting
types (actually, for characterising type containment).

3.2 Type representation and subtyping algo-
rithm

Now that we have a semantically defined subtyping relation the
time has come to think of an effective way to check whether two
types are in the subtyping relation. In order to define the subtyping
algorithms it results much easier to work with types that are written
in a canonical form. Finding a canonical form is not very hard since
we are helped in it by the semantic interpretation of types. So let us
consider again our types that can be seen as the set of regular trees
coinductively defined by:

t ::= 0 | 1 | t →→→ t | t××× t | ¬¬¬t | t∨∨∨ t | t∧∧∧ t

Let call atom either an arrow type t →→→ t or a product type t××× t. A
type is in disjunctive normal form if and only if it is a finite union
of finite intersections of atoms or their negations (in the latter case
we speak of negative atoms). For instance:

(a1∧∧∧a2∧∧∧¬¬¬a3)∨∨∨ (a4∧∧∧¬¬¬a5)∨∨∨ (¬¬¬a6∧∧∧¬¬¬a7)∨∨∨ (a8∧∧∧a9)

where ai’a are atoms (we identify 0 with the empty union and 1
with the empty intersection).

We say that two types s and t are equivalent if they have the same
interpretation (that is JsK = JtK) and we denote it by s ' t. Every
type of our system is equivalent to a type in disjunctive normal
form. Therefore without loss of generality we can consider this
form as the representation of types we work on.

We can further clean our representation by noting that if the in-
ner intersections mix atoms with different constructors, then they
degenerate either to 0, or to a unique type according to the polari-
ties of the involved atoms7: so for instance (s1×××t1)∧∧∧(s2 →→→ t2)' 0
and (s1 ××× t1)∧∧∧¬¬¬(s2 →→→ t2) ' s1 ××× t1. Therefore we only consider
unions of intersections on atoms of the same sort (that is, that do
not mix product and arrow types), e.g. :

((s1××× t1)∧∧∧ (s2××× t2)∧∧∧¬¬¬(s3××× t3))
∨∨∨

(¬¬¬(s4 →→→ t4)∧∧∧¬¬¬(s5 →→→ t5))
∨∨∨

((s2××× t3)∧∧∧ (s4××× t1))

Finally we can organise the outer union into two packets by
grouping together all the intersections on the same sorts (here above
the first and third addenda):

((s1××× t1)∧∧∧ (s2××× t2)∧∧∧¬¬¬(s3××× t3))
∨∨∨

((s2××× t3)∧∧∧ (s4××× t1))

_

_

_

(¬¬¬(s4 →→→ t4)∧∧∧¬¬¬(s5 →→→ t5))

Now note that every addendum can be represented by a pair (P,N)
where P is the set of the positive atoms of the intersection and
N the negatives ones. For instance the first addendum is the pair
7The case when an intersection mix only negative atoms needs a special
treatment.

({(s1 × t1),(s2××× t2)} , {(s3 × t3)}). Therefore every packet can be
represented by a set S of such pairs, under the following form:

_

_

_

(P,N)∈S

(

(
^

^

^

a∈P
a)∧∧∧ (

^

^

^

a∈N
¬¬¬a)

)

Thus two of such sets are all we need to represent every type. For
instance our previous type is represented by the pair
({

({(s1×××t1),(s2×××t2)} , {(s3×××t3)})
({(s2××× t3),(s4××× t1)},{})

}

,,,{({},{(s4→→→t4),(s5→→→t5)})}
)

It is interesting to notice that this is not just a theoretical represen-
tation but it is also the representation we used in early versions of
the CDuce interpreter (the current implementation is using more
efficient partial decision trees).

But let us go back to our problem, which is the one of defining
algorithms that verify whether two types s and t are in the subtyping
relation. The key observation for what follows is again that the
problem of deciding whether two types are in subtyping relation
can be reduced to the problem of deciding whether a type is empty.
Recall

s ≤ t ⇐⇒ JsK ⊆ JtK ⇐⇒ JsK∩ JtK = ∅ ⇐⇒ Js∧∧∧¬¬¬tK = ∅.

Since ∅ = J0K then

s ≤ t ⇐⇒ s∧∧∧¬¬¬t ' 0
Since every type can be represented as the union of addenda of
uniform sort and a union is empty only if all its addenda are empty,
then in order to decide the emptiness of every type it suffices to
establish when the terms

A = (
^

^

^

a∈P
a)∧∧∧ (

^

^

^

a∈N
¬¬¬a)

are empty for P and N formed by types of the same sort (all prod-
ucts or all arrows). Or equivalently this results to deciding

(
^

^

^

a∈P
a) ≤ (

_

_

_

a∈N
a)

that is, we must be able to decide whether

(
^

^

^

s×××t∈P
s××× t)∧∧∧ (

^

^

^

s×××t∈N
¬¬¬(s××× t)) (2)

and
(

^

^

^

s→→→t∈P
s→→→ t)∧∧∧ (

^

^

^

s→→→t∈N
¬¬¬(s→→→ t)) (3)

are equivalent to 0. So the algorithm must decompose this problem
into simpler subproblems, and this can be done by using some gen-
eral algebraic rules combined with the properties of the semantic
interpretation. In particular we have that the type in (2) is equiva-
lent to 0 if and only if for every N′ ⊆ N:

^

^

^

(t×××s)∈P
t ∧∧∧

^

^

^

(t ′×××s′)∈N ′

¬¬¬t ′

' 0 or

^

^

^

(t×××s)∈P
s ∧∧∧

^

^

^

(t ′×××s′)∈N\N ′

¬¬¬s′

' 0;

while the type in (3) is equal to zero if and only if there exists some
(t ′ →→→ s′) ∈ N such that for every P′ ⊆ P:

t ′∧∧∧
^

^

^

(t→→→s)∈P′

¬¬¬t

' 0 or

^

^

^

(t→→→s)∈P\P′

s∧∧∧¬¬¬s′

' 0.

The proof of this second equivalence can be found in [11] (the
first being a well known property of products of sets). For the time

Γ ` e : s ≤B t
Γ ` e : t (subsum)

Γ ` x : Γ(x)
(var) Γ ` e1 : t1 Γ ` e2 : t2

Γ ` (e1,e2) : t1××× t2
(pair) Γ ` e : t1××× t2

Γ ` πi(e) : ti
(proj)

Γ ` e1 : t1 →→→ t2 Γ ` e2 : t1
Γ ` e1e2 : t2

(appl)

t ≡ (
V

V

V

i=1..n si →→→ ti)\\\(
W

W

W

j=1..m s′j →→→ t ′j) 6≤ 0
(∀i) Γ,(f : t),(x : si) ` e : ti

Γ ` µ f (s1→→→t1;...;sn→→→tn)(x).e : t
(abstr)

(for s1 ≡ s∧∧∧ t, s2 ≡ s∧∧∧¬¬¬t)
Γ ` e : s (∀i = 1,2). (si ' 0∨Γ,(x : si) ` ei : t ′)

Γ ` (x = e∈∈∈ t)???e1:e2 : t ′
(typecase)

Figure 2: Typing rules

being note that we have obtained a specification of the subtyping
algorithm: to decide if s ≤ t we consider s∧∧∧¬¬¬t, put it in disjunctive
normal form with homogeneous atoms, and then coinductively sat-
urate it (since we have recursive types) by decomposing it accord-
ing to the rules above 8. The termination of the algorithm is ensured
by the regularity and contractiveness of our types, while soundness
and completeness are given by the correctness of the transforma-
tions we did right above, and the universality of the model.

Of course this is just a high level specification of the algorithm. If
we implemented it plainly we surely obtain a program with back-
tracking and an explosion of memory usage. The current imple-
mentation of subtyping in CDuce use a lightweight solver for mono-
tonic boolean constraints to remove backtracking and extensively
uses caching techniques and set-theoretic heuristics.

3.3 Language
So let us consider our type system whose types are those defined

in Section 2.5, namely

t ::= 0 | 1 | t →→→ t | t××× t | ¬¬¬t | t∨∨∨ t | t∧∧∧ t

and whose subtyping relation is the relation ≤B induced by some
(bootstrap) model B of the types above (in practice we will al-
ways choose the bootstrap model to be the universal model U of
Section 3.1). We said that the conditions we chose account for
languages with possibly non-terminating and overloaded functions.
Therefore, we apply this type system to a simply typed lambda cal-
culus with recursive and overloaded functions.

The syntax of expressions of the language is as follows:

e : := x variable
| µ f (s1→→→t1;...;sn→→→tn)(x).e abstraction, n ≥ 1
| e1e2 application
| (e1,e2) pair
| πi(e) projection, i = 1,2
| (x = e∈∈∈ t)???e1:e2 binding type case

The language is simple. The core is a lambda-calculus with pairs
and projections. Functions are of the form µ f (s1→→→t1;...;sn→→→tn)(x).e.
We used the binder µ to denote the fact that the definition may be
recursive, that is that f may occur free in the body e of the func-
tion9. The other point to remark is that the function specifies a
8In the absence of recursive types we use the transformation rules above to
inductively decompose the problem.
9In the untyped λ-calculus this definition corresponds to the term
Y(λ f .λx.e) were Y is a fixpoint combinator. However in our typed frame-
work we cannot see recursion as a special case of application of a combi-
nator as we need to determine the recursion variable in order to precisely
type the body of the function and, more precisely, to repeat it in case of
overloading.

set of arrow types. When the specified arrows are at least two, it
denotes the overloaded nature of the function. In the definition
µ f (s1→→→t1;...;sn→→→tn)(x).e the specified type indicates that when this
function is applied to an argument of type si then it returns a re-
sult of type ti. Therefore the set of arrows indicates that we have to
check that e has type ti under the hypothesis that x has type si.

Note that alone this does not suffice to have real overloading,
that is the execution of different code for different input types: we
can use the option of specifying several arrows just to give a more
precise typing. For instance, if we had in our calculus integers,
even and odd types, we could write

µs(Even→→→Odd;Odd→→→Even)(x).x +1

instead of the less precise µs(Int→→→Int)(x).x+1. But even though two
arrow types are specified in the definition of s, this function is by
no means overloaded.

So in order to endow our language with real overloading we also
add a type case expression

(x = e∈∈∈ t)???e1:e2

that binds e to x and executes e1 or e2 according to whether e is of
type t or not.10

Because of this expression, the semantics of the language is de-
fined in terms of the typing of the terms (or of the values at least).
Therefore before giving the reduction semantics we have to define
the type system. We have the types, we have the subtyping relation,
it remains to define which terms have which types. This is done by
the deduction system in Figure 2.

The first five rules are completely standard and do not deserve
any particular comment. Just note that the subsumption rule uses
the bootstrap subtyping relation ≤B.

Let us explain the rule for typing abstractions. As a first approx-
imation we can consider the case for m = 0, that is, when the type
t of the function is the intersection of all the types specified in its
interface:

V

V

V

i=1..n si →→→ ti. The rule thus verifies that the function has
indeed all these types, that is, for every input type si →→→ ti, it checks
that the body e has type ti under the assumption that the parame-
ter x has type si. Since the function may be recursively defined, it
is also assumed that the function identifier f has type t, which is
the type given to the abstraction itself. The rule actually is (and
must be) more general since it allows us to take for t a type strictly
smaller than the intersection of the types in the interface: indeed, it
is possible to remove any finite number of arrow types from the in-

10Note that binding the variable in the type case provides a more precise
typing, since it allows us to type e1 and e2 under different hypothesis for x
(see the typecase typing rule).

tersection, provided that t remains non-empty. The technical reason
for this will be explained later on.

The rule for the type case is also quite complex. It first deduces
the type s of the checked argument, then it separately checks the
two branches under the hypothesis that e (thus x) is in t (and thus
in s∧∧∧ t) or not (that is in s∧∧∧¬¬¬t). The rule discards the branches
that cannot be selected (which is safely approximated by the fact
that the corresponding si is empty). The reader may wonder why
we do not return a type error when one of the two branches cannot
be selected. As a matter of fact this is a key feature for typing
overloaded functions, where the body is repeatedly checked under
different hypothesis for some of which the si of some typecase may
be empty.11 This simple function should clarify the point:

µf(Int→→→Int;Bool→→→Bool)(x).(y = x∈∈∈ Int)???(y+1):not(y)

when we type the body under the hypothesis x : Int, then the second
branch cannot be selected while under x : Bool is the first one that
cannot be selected.

We can now give the reduction rules:

(µ f (...)(x).e)v → e[x/v,(µ f (...)(x).e)/ f]
(x = v∈∈∈ t)???e1:e2 → e1[x/v] if v ∈ JtK
(x = v∈∈∈ t)???e1:e2 → e2[x/v] if v 6∈ JtK

πi(v1,v2) → vi

the first rule is plain β-reduction in the presence of recursion: the
actual parameter is substituted for the formal one, and the whole
function is replaced for the recursion variable in the body. Context
rules, that we omit, implement standard call-by-value, left-most re-
duction, and v ranges over values that is closed normal forms; they
are well-typed closed terms generated by the following production:

v ::= µ f (...)(x).e | (((v,,,v)))

At this point, we have a language, a type system, and a small-
step operational semantics. It is then possible to prove type sound-
ness by classical syntactical methods (subject reduction theorem,
progress lemma). The set-theoretic definition of subtyping helps to
prove intermediate lemmas, such as elimination of subsumption or
admissibility of the conjunction rule (namely, Γ ` e : t1 ∧∧∧ t2 ⇐⇒
Γ ` e : t1 ∧Γ ` e : t2). With a syntactic presentation of the subtyp-
ing relation, we would need to prove a lot of tedious properties on
the subtyping relation (monotonicity, Boolean laws,. . .), that in the
semantic approach follow straightforwardly from the set-theoretic
definition. Note that even if the subtyping relation is defined se-
mantically, we do not have to deal with complex denotational mod-
els of the language.

More important for the goals of this paper is the question whether
this language closes the circle as we anticipated in Section 2.7. To
answer this question, consider the language we obtained and in
particular all its values. This induces the interpretation (V ,JK

V
)

where V is the set of values we defined in the production right
above and JKV is the mapping defined as JtKV = {v ∈ V | ` v : t}.

It turns out that this interpretation satisfies the conditions of be-
ing a set-theoretic model, therefore we can use it to define a new
subtyping relation on T :

s ≤V t ⇐⇒ JsK
V

⊆ JtK
V

11Actually, this is far from being a minor point: not considering the return
type of unused branches is the main difference between dynamic overload-
ing and type-case (or, equivalently, the dynamic types of [1]). The latter
always returns the union of the result types of all the branches and, as such,
it is not able to discriminate different input types.

and this relation satisfies the property

s ≤B t ⇐⇒ s ≤V t (4)

that is, the subtyping relation induced by the bootstrap model al-
ready defines the subtyping relation of the “types as sets of values”
model of the resulting calculus. We have closed the circle we broke.

What is the intuition behind this technical result, and why does
it hold? Equation (4) tells us that the language we defined is rich
enough, since there always exists a value to separate two distinct
types. In other terms, it tells us that the set of values of our language
is a model of types with “enough points”. This can be understood
by noting that the ⇒ direction of (4) is straightforward (as it comes
from subsumption), so what (4) states is that—whatever bootstrap
model we started from—whenever s 6≤B t, then we can exhibit a
value v of our language such that ` v : s and 6` v : t. In particular,
the peculiar feature of our language that makes its set of values rich
enough, is that functional values can specify several arrow types.
The multiplicity of arrow types allows us to exhibit values whose
minimum type is an intersection of arrow types (that is, to define
overloaded functions values). So, in particular, in the general case
of arrow subtyping, for instance

V

V

V

i=1..nsi →→→ ti 6≤
W

W

W

j=1..m s′j →→→ t ′j,
it is easy to exhibit a value that is in the former type but not in
the latter, since any function of the form µ f (s1→→→t1;...;sn→→→tn)(x).e can
be used. Indeed, the rule (abstr) assigns to this value the type
(
V

V

V

i=1..nsi →→→ ti)\\\(
W

W

W

j=1..ms′j →→→ t ′j). This explains why we need to
allow these negation of arrow types in the rule (abstr), and it is in-
teresting to notice that this extra flexibility does not jeopardise type
soundness in the system.

To put it differently, equation (4) says that the subsumption rule

t ≤B s =⇒ (∀e. Γ ` e : t ⇒ Γ ` e : s)

is actually an equivalence:

t ≤B s ⇐⇒ (∀e. Γ ` e : t ⇒ Γ ` e : s)

and, indeed, we can restrict our attention to values:

t ≤B s ⇐⇒ (∀v. ` v : t ⇒ ` v : s)

And in particular ⇐= states that

t 6≤B s =⇒ (∃v. ` v : t and 6` v : s)

The presence of enough values to separate all distinct types (as the s
and t above) makes the language “appropriate”—as we informally
said in Section 2.7, cf. Footnote 5—to our development. Therefore
it is not by chance that (4) holds, but it is due to the fact that the
language we defined precisely matches the intuition we followed in
defining the semantics of types.

Another important result relates the subtyping relation and the
operational semantics. Consider two types t1 and t2 such that t1 ≤
0 →→→ 1 (that is, all the values in t1 are function abstractions). Then
the equation t1 ≤ t2 →→→ t has a smallest solution t, and this solution
is also characterised (up to equivalence) by the semantic property:
JtK

V
= {v | v1v2

∗
→ v,` v1 : t1,` v2 : t2}.

3.4 Semantic subtyping at work
Now that we have established our basic system and studied its

properties, we can consider to add new type constructors to it. In or-
der to do that we will proceed semantically, of course. This means
that for every new type constructor we will add a constraint to the
model definition which intuitively will force a set-theoretic inter-
pretation of the new types. In other terms we use the function E J K
to associate to each type constructor the set-theoretic intuition we
have of it and then, somewhat mechanically, we will derive the sub-
typing rules for it.

Reference types.
The first type constructor we add to our types is the construc-

tor for reference types, ref t. To add it to our semantic subtyping
framework we have thus to establish what is a set-theoretic interpre-
tation for ref t. Let us proceed extensionally as we did for function
spaces. Intuitively we want to interpret ref t as the set of values of
type ref t. A value of type ref t is a container, a box, that can con-
tain all the values of type t. It can then thus be identified with the
set of all values it can contain. In other terms we want to interpret
a value of type ref t as the set {refv | v ∈ JtK} which is of course
isomorphic to JtK. But then instead speaking of a value of type
ref t we should rather speak of the value of type ref t: since all
the “boxes” in ref t can contain exactly the same values, then they
are identified to the set above and, intensionally, they are all the
same. Thus the interpretation of ref t must be a singleton contain-
ing the unique value of type ref t which in its turn is univocally
identified by JtK. This of course is true only if JtK 6= ∅, because
otherwise ref t has an empty interpretation as well (because to cre-
ate the reference, we need an initial value of type t). This explains
why the condition we would like to impose for reference types is
the following one:

Jref tK =

{

{JtK} if JtK 6= ∅

∅ otherwise (5)

Of course such a condition has the same set-theoretic problems as
the condition (1) we initially established for arrow types, but before
handling it let us introduce a second type constructor:

Lazy evaluation.
The second type constructor we add to our language is the con-

structor for lazy expressions, lazy t. Intuitively a value of lazy t
is a blocked computation that when unblocked returns a value of
type t, so in a programming language a value of type lazy t is
an expression of the form lazye where e is a closed expression
(i.e. possibly not in normal form) of type t. Our motivation for
introducing lazy types in CDuce is to model streaming process-
ing of XML. Intuitively, one might imagine to define the type of
infinite streams of integers as the recursive type t = Int××× t. Un-
fortunately t ' 0, therefore adding such streams to the language
would inhabit the empty type, making the whole type system col-
lapse. The solution is the addition of lazy types. The idea is
that if we want to have, say, a stream of integers, we can type
it by the following recursive type: s = Int××× lazy s. So for in-
stance (µ f (Int→s)(x).(((x,,,lazy (f (x + 1))))))0 is the stream of all nat-
ural numbers. Note that the same solution without the “blocking”
lazy constructor yields to the definition of a diverging expression:
(µ f (Int→t)(x).(((x,,, f (x + 1)))))0), as it is natural since every value it
returned would inhabit the empty type (recall that t = Int××× t is
empty).

To give a set-theoretic intuition of lazy types is quite easy: lazy t
must be interpreted as the set of all values of that type, that is the
set {lazye | e is closed and e : t}. But each lazy e is identified
by all possible results it can return, namely {v | e →∗ v}. This is
a subset of JtK, from which we deduce the following condition for
lazy types:

Jlazy tK = P(JtK) (6)

Note that both conditions (5) and (6) induce the same set-theoretic
problems as the equation (1) for functional types. So the solution
is the same as there: we do not want equality to hold rather the
subtyping relation to be defined as if . Therefore instead of adding
some new condition 7, it simply suffices to extend the definition of

E JK for the new type constructor as follows:

E Jref tK =

{

{JtK} if JtK 6= ∅

∅ otherwise
E Jlazy tK = P(JtK)

and the condition 7 originally introduced for function spaces makes
everything work with the new type constructors as well.

Finally it remains to extend the definition of the subtyping algo-
rithm for the new type constructors, which come to establish when

(
^

^

^

a∈P
a) ≤ (

_

_

_

a∈N
a)

holds, when the a’s are all ref types or all lazy types. This is quite
easy for ref types:

(
^

^

^

ref s∈P
ref s)≤ (

_

_

_

ref t∈N
ref t) ⇐⇒

∃ref s ∈ P, s ' 0,or
∃ref s1,ref s2 ∈ P,s1 6' s2,or
∃ref s ∈ P, ∃reft ∈ N, s ' t

Note that in the case of P and N being singletons we recover the
classic invariant subtyping relation for references types (enhanced
with the case to deal with ref0).

EXCURSUS. Daniele Varacca noticed that if we allow
recursion inside reference types, then there does not
exist any model. To see why, consider the following
recursive type suggested by Daniele:

t = Int∨∨∨ (ref t∧∧∧ref Int)

If we had a model, then either t = Int or t 6= Int hold.
Does t = Int? Suppose it does, then ref t∧∧∧ref Int =
ref Int and Int = t = Int∨∨∨ ref Int, which is not true
since ref Int is not contained in Int. Therefore it must
be t 6= Int. According to our semantics this implies
ref t∧∧∧ref Int = 0, because they are interpreted as two
distinct singletons. Thus t = Int∨∨∨0 = Int, contradic-
tion. The solution is to avoid recursion inside reference
types, for instance by requiring that on every infinite
branch of a regular type there are only finitely many
occurrences of the ref type constructor. It is then pos-
sible to define a model, but this is a completely new
work: see [8].

For lazy types, instead, we expect to find a covariant subtyping re-
lation. By performing some set-theoretic computation we arrive to
determine that (

V

V

V

lazys∈Plazy s)∧∧∧ (
V

V

V

lazy t∈N¬¬¬lazy t) is equiva-
lent to 0 if and only if there exists lazy t ∈ N such that for every
P′ ⊆ P:

^

^

^

lazys∈P′

s∧∧∧¬¬¬t

' 0

or equivalently we have that (
V

V

V

lazys∈Plazy s)≤ (
W

W

W

lazy t∈N lazy t)
if and only if there exists lazy t ∈ N such that for every P′ ⊆ P:

(
^

^

^

lazys∈P′

s) ≤ t

from which the covariance of the lazy types appears in a clearer
way.

Note that this is a special case of function types where the do-
main is 1. Indeed the values of the lazy types can be assimilated
to functions that wait for any argument to carry on the rest of the
computation, that is lazy t = 1 →→→ t. However while this holds in
the simplified setting we presented here, this is no longer true in
the more complex framework used in [12] where a different model
condition is used to account for the presence of type errors.

Back to product types.
In the definition we give for set theoretic models earlier in this

section we stated for product types that the following equation had
to hold

Jt1××× t2K = Jt1K× Jt2K (7)
and we let understand that such a condition implied some closure
properties on the domain D in particular it had to contain a subset
isomorphic to its square type: D ' . . .+D2. We did not dwell on
this point as it is easy to find domains that are closed for finite prod-
ucts. However even if the condition (7) can be easily satisfied it is
nevertheless constraining, as it states how the product types are to
be interpreted. By now we know that while for boolean type con-
structors (∧∧∧,∨∨∨,¬¬¬) it is very important to fix their interpretation, all
that matters for atom type constructors is rather the relation induced
by their interpretation. For all the other atomic type constructors
(→→→,ref ,lazy) we just imposed that they must be interpreted so
that the induced relation were as if they were set-theoretic. We did
it by resorting to an extensional interpretation of types. Product
types are no exception. Therefore rather than assuming some clo-
sure properties of the target D we replace the condition (7) by an
equivalent condition on E J K.

To summarise consider the type system obtained by allowing ar-
bitrary boolean combinations of types with the type constructors
→→→, ×××,ref ,lazy :

t ::= 0 | 1 | t →→→ t | t××× t | lazy t | ref t | ¬¬¬t | t∨∨∨ t | t∧∧∧ t

Let J K be an interpretation function of the types above in some set
D . We say that J K is set-theoretic if and only if (i) it interprets
boolean constructors as the corresponding set-theoretic operators
on D and (ii) the counterimage of the empty set is the same as for
its associated extensional interpretation:

1. J0K = ∅;
2. J1K = D ;
3. Jt1∨∨∨ t2K = Jt1K∪ Jt2K;
4. Jt1∧∧∧ t2K = Jt1K∩ Jt2K;
5. J¬¬¬tK = D\JtK;
6. JtK = ∅ ⇐⇒ E JtK = ∅

where the extensional interpretation associated to J K is defined as:

E J0K = ∅

E J1K = P(D2)+D2 +P(D)+P(P(D))

E Jt1∨∨∨ t2K = E Jt1K∪E Jt2K
E Jt1∧∧∧ t2K = E Jt1K∩E Jt2K
E J¬¬¬tK = E J1K\E JtK

E Jt →→→ sK = P(JtK× JsK)
E Jt××× sK = JtK× JsK
E Jlazy tK = P(JtK)

E Jref tK =

{

{JtK} if JtK 6= ∅

∅ otherwise

Note that the conditions for being a set-theoretic model are no
longer seven but just six (since products are now handled as the
other type constructors) and that the extensional interpretation is
defined on E J K : T → P(P(D2)+D2 +P(D)+P(P(D)))
since we have added P(D) and P(P(D)) to extensionally inter-
pret lazy and ref types, respectively.

And that’s all. Now it remains to find a model and define the cor-
responding subtyping relation (which is far from being straightfor-
ward: see the excursus earlier in this section).

So the moral of our approach is, be strict in the interpretation
of boolean combinators (define precisely how they must be inter-
preted), and loose in the interpretation of type constructors (state
only how containment should look like, extensionally).

Other paradigms.
Finally, we want to stress that although here we applied the se-

mantic subtyping approach to add boolean combinators to a sim-
ply typed λ-calculus, our technique is general and applies to other
paradigms, as well. For instance, in [8] our technique is applied
to define the Cπ-calculus, a π-calculus where boolean combinators
are added to the type constructors ch+(t) and ch−(t); these classify
all the channels on which it is possible to read or, respectively, to
write a value of type t.

The use of boolean combinations makes it possible to get rid
of the invariant channel type constructor since this can be defined
as the intersection of the other two: ch(t) def

= ch+(t)∧∧∧ch−(t). The
definition of the extensional interpretation is still needed for cardi-
nality reasons, however bootstrapping here has a different flavour,
as it generates a model that is much closer to the model of values.
Interestingly, this model is defined by a fixpoint construction.

Another interesting point is that every channel value in Cπ has
a minimum type (which has the form ch(t) for some t). A conse-
quence of this is that the typing rule for channels does not require
to include arbitrary differences with other types, as it is the case
here with the (abstr) typing rule of this work.

In Cπ one finds the same paradox as the one with recursive ref-
erence types in the previous excursus (this is not surprising since a
reference closely resembles to a read/write channel), but this prob-
lem can be get rid of by restricting to a “local” variant of the calcu-
lus which forbids to read from a channel received in input. This is a
standard technique in π-calculus and can be implemented in Cπ by
deleting the covariant ch+() type constructor. But this also makes
the invariant constructor ch() be no longer definable, which in turn
makes the minimum typing property for channel values fail. In this
case in order to still have a model of values, one is obliged to in-
troduce in the typing rule for channels arbitrary (non-empty) differ-
ences of other channel types, exactly as in the (abstr) rule presented
here. This is not the only striking resemblance between CDuce and
Cπ: for instance it seems worth mentioning that in order to decide
the subtyping relation for the Cπ, one tackles the same difficulties
as in deciding general subtyping for the polymorphic version of
CDuce [15], namely, one must be able to decide whether a type is
a singleton or not. A more in-depth study of the relation between
CDuce and Cπ is under way.

4. Conclusion
We have informally explained the intuition and the basic tech-

niques to develop a type system based on a semantically (set-theo-
retically) defined subtyping relation. As we anticipated in the intro-
duction, our approach is quite generic: we mean by that that while
not all the components we introduced may be needed when consid-
ering a particular language (universality is not an issue if recursive
types are absent, bootstrap is useless in the presence of name-based
subtyping, and so on), they nevertheless provide a bunch of recipes
that can be used to test the feasibility of a semantic definition of
subtyping.

We hope to have provided the reader with enough information
so that she/he now feels familiar enough with the “semantic sub-
typing” setting to dig in the technical details of [12, 11, 13], and try
to follow these guidelines to apply, if possible, the approach to the
design of her/his favourite language.

Acknowledgements.
This article stems out from many interesting discussions we had

with other researchers. We are grateful to all of them and in par-
ticular to Mariangiola Dezani and Daniele Varacca for their many
suggestions and conspicuous feedback on the article. We want to
thank Amy Felty, Catuscia Palamidessi, and the program commit-
tees of PPDP 2005 and ICALP 2005 for offering us this rare oppor-
tunity to present our work. This work was partially funded by the
ACI Data-masses project “XML Transformation Languages: Logic
and Applications” (TraLaLA).

5. References
[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic

typing in a statically typed language. Transactions on
Programming Languages and Systems, 13(2):237–268, April
1991.

[2] Alexander Aiken and Edward L. Wimmers. Type inclusion
constraints and type inference. In Proceedings of the Seventh
ACM Conference on Functional Programming and Computer
Architecture, pages 31–41, Copenhagen, Denmark, June 93.

[3] Roberto M. Amadio and Luca Cardelli. Subtyping recursive
types. ACM Transactions on Programming Languages and
Systems, 15(4), September 1993.

[4] A. Asperti and G. Longo. Categories, Types and Structures:
An Introduction to Category Theory for the Working
Computer Scientist. MIT-Press, 1991.

[5] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A
filter lambda model and the completeness of type
assignment. Journal of Symbolic Logic, 48(4):931–940,
1983.

[6] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an
XML-friendly general purpose language. In ICFP ’03, 8th
ACM International Conference on Functional Programming,
pages 51–63, Uppsala, Sweden, 2003. ACM Press.

[7] G. Castagna, G. Ghelli, and G. Longo. A calculus for
overloaded functions with subtyping. Information and
Computation, 117(1):115–135, 1995.

[8] G. Castagna, R. De Nicola, and D. Varacca. Semantic
subtyping for the π-calculus. In LICS ’05, 20th Annual IEEE
Symposium on Logic in Computer Science. IEEE Computer
Society Press, 2005.

[9] M. Coppo and M. Dezani-Ciancaglini. An extension of the
basic functionality theory for the λ-calculus. Notre-Dame
Journal of Formal Logic, 21(4):685–693, October 1980.

[10] F. Damm. Subtyping with union types, intersection types and
recursive types II. Research Report 816, IRISA, 1994.

[11] Alain Frisch. Théorie, conception et réalisation d’un langage
de programmation fonctionnel adapté à XML. PhD thesis,
Université Paris 7, December 2004.

[12] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken.
Semantic Subtyping. In Proceedings, Seventeenth Annual
IEEE Symposium on Logic in Computer Science, pages
137–146. IEEE Computer Society Press, 2002.

[13] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken.
Semantic Subtyping. Extended version of [12], in
preparation., 2005.

[14] R. Hindley and G. Longo. Lambda-calculus models and
extensionality. Zeit. Math. Logik Grund. Math.,
26(2):289–319, 1980.

[15] H. Hosoya, A. Frisch, and G. Castagna. Parametric
polymorphism for XML. In POPL ’05, 32nd ACM
Symposium on Principles of Programming Languages. ACM

Press, 2005.
[16] H. Hosoya and B. Pierce. XDuce: A typed XML processing

language. ACM Transactions on Internet Technology,
3(2):117–148, 2003.

[17] Haruo Hosoya. Regular Expression Types for XML. PhD
thesis, The University of Tokyo, 2001.

[18] Haruo Hosoya and Benjamin C. Pierce. Regular expression
pattern matching for XML. In The 25th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2001.

[19] John C. Reynolds. The coherence of languages with
intersection types. In Takayasu Ito and Albert R. Meyer,
editors, Theoretical Aspects of Computer Software, volume
526 of Lecture Notes in Computer Science, pages 675–700,
Berlin, 1991. Springer-Verlag.

[20] John C. Reynolds. Design of the programming language
Forsythe. Technical Report CMU-CS96 -146, Carnegie
Mellon University, Pittsburgh, Pennsylvania, June 1996.

