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Abstract

This paper presents the core type system and type inferédnce a
gorithm of OCamlDuce, a merger between OCaml and XDuce.
The challenge was to combine two type checkers of very differ
ent natures while preserving the best properties of botimdpr
pality and automatic type reconstruction on one side; vegt p
cise types and implicit subtyping on the other side). Tyfergnce
can be described by two successive passes: the first one itan M
like unification-based algorithm which also extracts datw fton-
straints about XML values; the second one is an XDuce-lige-al
rithm which computes XML types in a direct way. An optionaépr
processing pass, called strengthening, can be added o ralboe
implicit use of XML subtyping. This pass is also very simitaran

ML type checker.

Categories and Subject Descriptors  D.3.0 [Programming Lan-
guage$ General; D.3.2 Programming LanguagésLanguage
Classifications—Applicative (functional) languages

General Terms Languages

Keywords OCaml, XDuce, CDuce, XML, type inference, regular
expression types

1. Introduction

This paper presents the core type system of OCamlIDuce, &emerg
between OCaml [IF01] and XDuce [Hos00, HP0OO, HP03, HVPOO].
OCamlDuce source code, documentation and sample applisati
are available abt t p: / / www. cduce. or g/ ocam .

OCaml is a widely-used general-purpose multi-paradigm pro
gramming language with automatic type reconstruction dase
unification techniques. XDuce is a domain specific and tyge-s
functional language adapted to writing transformationsXL
documents. It comes with a very precise and flexible typeegyst
based on regular expression types and a natural notion dffsub
ing. The basic type-checking primitives for XDuce constiuts
are rather involved, but the structure of the type checksiniple:
types are computed in a bottom-up way along the abstractsynt
tree; the input and output types of functions are expligtigvided
by the programmer. The high-level objective of the OCami®uc
project is to enrich OCaml with XDuce features in order toyule
a robust development platform for applications that needeal
with XML but which are not necessarily focused on XML.
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The challenge was to combine two type checkers of very differ
ent natures while preserving as much as possible the bgstnies
of both (principality and automatic type reconstructiorome side;
very precise types and implicit subtyping on the other side)

Our main guideline was to design a type system which can be
implemented by reusing existing implementations of OCand a
CDuce [BCF03, Fri04]. (CDuce can be seen as a dialect of XDuce
with first-class and overloaded functions — for the mergethwi
OCaml, we don't consider these extra features). Becausbeof t
complexity of OCaml’s type system, it was out of questiongion-
plement it. The typing algorithm we describe in this papes Ibeen
successfully implemented simply by combining a slightlydified
OCaml type checker with the CDuce type checker, and by adding
some glue code. As a result, OCamlDuce is a strict extendion o
OCaml: programs which don't use the new features will betéeta
exactly the same by OCaml and OCamlDuce. It is thus possible
to compile any existing OCaml library with OCamlIDuce. Alse
believe our modifications to the OCaml compiler are smallugimo
to make it easy to maintain OCamlDuce in sync with future evol
tions of OCaml. Our experience so far confirms that: OCaméDuc
was initially developed over OCaml 3.08.3, and then adapiét
out any problem for each release until the current 3.09.2.

Another guideline in the design of OCamlDuce was that XDuce
programs should be easily translatable to OCamlIDuce in &amec
ical way. In XDuce, all the functions are defined at the toplev
and comes with an explicit signature. We can obtain an OCaml-
Duce program by some minor syntactical modifications (the ne
constructions in the language are delimited to avoid graticala
overloading of notations). Explicit function signaturee aimply
translated to type annotations.

The design goals pushed us into the direction of simplivity.
choose to segregate XDuce values from regular ML values. Of
course, a constructed ML value can contain nested XDucesalu
but from the point of view of ML, XDuce values are black boxes,
and similarly for types. Also, we decided not to have paraimet
polymorphism on XDuce types. A type variable can of course be
instantiated to an XDuce type (or to a type which containsstate
XDuce type), but it is not possible to force a generalizedade to
be instantiated only to XDuce types or to use a type varialtlginv
an XDuce type. The technical presentation introduces amaf
foreign type variables, but they are nothing more than anieeh
device for inferring ground XDuce types.

Overview In Section 2, we give some intuitions about the behav-
ior of OCamlDuce’s type-checker.

The formalization of the type system will be developed by ab-
stracting away from details about XDuce. In Section 3, weoint
duce an abstract notion ektensior(foreign types and foreign op-
erators) and show of XDuce can be seen as an extension. In Sec-
tion 4, we present the type-system and type inference dhgoffor
a calculus made of ML [Mil78, Dam85] plus an arbitrary exiens
The basic idea is to rely on standard techniques for ML tyferin
ence. Indeed, we start from a type system which is an instahce



ML where foreign types are considered as atomic types amitfior
operators are explicitly annotated with their input anchotitypes.
Then we present an algorithmitdfer these annotations. This algo-
rithm is described as two successive passes: the first ostighty

The basic idea of the OCamlDuce type system is to infer XML
types for the inputs and outputs of XML operators. This isalon
by introducing internally a new kind of type variables, edlXML
type variables. Before proper type-checking starts, eddh Xp-

modified version of an ML type-checker, and the second one is a erator used in the program is annotated with fresh XML typé va

simple forward computation on foreign types.
In Section 5, we present a preprocessing pass, called gireng

ening, whose purpose is to make more programs accepted by theI

type system by allowing implicit use of subtyping.
In Section 6, we present other details of the concrete iategr
in OCaml. In Section 7, we compare our approach to relatetsvor

2. Anexample

In this section, we illustrate the behavior of OCamlIDucgiset
checker on the following code snippet:

let f x match x with
{{ [ (yr:r<a>_

11 ->{{y @y }}
let z1 =

f{{ [ <a>[] <b>[] <a>[<b>[]] ] }}
let z2 =
List.map f
[ {{ [ <a>[<a>[]] ] }};
{{ [ <a>[<c>[]] ] }} 1

The example is intended to illustrate the use of the OCaml
type checker to perform a data-flow analysis of XML values] an
also how OCaml features (here, higher-order functions axtd-d
structures) interact with XDuce features.

Double curly-braceg{...}} are used in OCamiDuce only
to avoid ambiguities in the grammar; they carry no typinginf
mation. For instance, the symb@used for list concatenation in
OCaml is re-used for denote XML sequence concatenationi- Sim
larly, the square brackefs . . ] are used both to denote OCaml list
literals (whose elements are separated by semi-colonsXifid
sequences literals when used within double curly braces (ghe-
ments are separated by whitespace). XML element literalgeit-
ten in the form<t ag>cont ent .

The first line of the program above declares a functiomhich
consists of an XML pattern matching on its argument, with a
single branch. The XML patterp = [ (y::<a>_ | _)* ]
extracts from an XML sequence all the elements with a<tag
and put them (in order) in the capture variaggleThe function is
then used twice, including once indirectly through a callthe
function Li st . map (from the OCaml standard library) of type
Va,B.(a — B) — «alist — [1list. For the purpose of
explaining type-checking, we will rewrite the body of thenétion
f as:

let f x
let y' = match[y;p](x)
{{y @y 1}

They andp parameters of themt ch operator represent the
capture variable under consideration and the pattert.itsel

In OCamlIDuce, XML values (elements, sequences, ...) and
regular OCaml values are kept apart. An XML value can of aeurs
appear as part of an OCaml value (e.g. the XML elements which

in

ables (in subscript position for the inputs, and in supgrsgosi-
tion for the outputs):

et f x =
let y° = match[y;p].;2(x) in
Hy @.vy 1}
let z1 =
f {{ [ <a>[] <b>[] <a>[<b>[]] ] }}
let z2 =
List.map f
[ {{ [ <a>[<a>[]] 1" }};
{{ [ <a>[<c>[]] 1 }} 1]

The regular OCaml type-checker is then applied. It givesitie
XML operator an arrow type following the annotations andnthe
proceeds as usual (generalizes typekeif -bound identifiers, in-
stantiates ML type-schemes when an identifier is used, and pe
forms unifications to make type compatible).

For instance, the concatenation operator in our examplgasag
the typets — w — 5, and the type-checker performs the
following unifications: t2 L3 ta (the type fory’), w1
e = t7 = s (the type for the argument df). It also produces
the following types for the top-level identifiers:

val f 1 11 — 5
val zl1 :
val z2 : 5 list

Of course, we must still instantiate the XML type variablegw
ground XML types. Each occurrence of an XML operator in the
program gives one constraint on the instantiation. Indeed¢an
interpret eachm-ary operator as as-ary function from XML types
to XML types. If we choose; and.s as representatives for their
classes of equivalence modulo unification, the program is:

let f x
let y’
Hy @.yYy

let z1
f{{ [ <a>[]

let z2
List.map f

[ {{ [ <a>[<a>[]

{{ [ <a>[<c>[] ]

from which we read the following constraints:

= matchly;pl2(x) in
1

<b>[]

11}

<a>[ <b>[]]

117 1h
117 3}

L1

L2 mat chly; p] (¢1)
0 S [ <as[] <b>(] <a>[<b>(]] ]

[ <a>[<a>[]] ]
[ <a>[<c>[]] ]

L1
L1

VIVIVIVIV

In this system, we considemt ch[ y; p] as a function from XML
types to XML types, given by XDuce'’s type inference algaritfor

are put into an OCaml list), but an OCaml value cannot appear pattern matching. Similarly, the operat@is now interpreted as a

within an XML value. The same applies to types: an XML type

can appear as part of a complex OCaml type expression, but the

converse is impossible. XML operators can be applied to XML

function from pair of types to types.
The set of constraints generates dependencies between vari
ables. We say that a variable on a left-hand side of a constrai

values and return new XML values. In the example, we can see depends on variables of the right-hand side. In our exantpée,

three kind of XML operators: XML literals (no argument), XML
concatenation (two arguments), and XML pattern matchinge (o
argument).

graph of dependencies between variables is acyclic. Inctse,
we can topologically order the variables and find the leasspo
ble ground XML type for each of them: we assign to a variabée th



union of all its lower bounds. In the example, we will thus garte
the following instantiation:

[ RL]
matchly; pl ([ Rl ]) =[
L2@2:[ R2R2]

whereRl1 is the regular expression

L1
L2
2

R2 ]

(<a>[] <b>[]<a>[<b>[]])|<a>[<a>[]]|<c>[]]]
andR2 is the regular expression
(<a>[]<a>[ <b>[1])]| <a>[ <a>[]| <c>[]]

Type-checking is over: we have found an instantiation forlxm
type variables which satisfies all the constraints. In essethe
type-checker has collected all the XML types that can flow to
the input of the function, and then type-checked the bodyhef t
function with the union of all these types. In general, thea@®@C
type-checker is used to infer the data flow of XML values in the
programs. The way to solve the resulting set of constraigts b
forward computation corresponds roughly to the structdréhe
XDuce type-checker.

Implicit subtyping Let's see what happens if we add an explicit
type constraint foe 1:

let z1 : {{[ <a>_* 1}} =
f{{ [ <a>[] <b>[] <a>[<b>[]] ] }}

(The type[ <a>_* ] denotes the set of all sequences made of
XML elements with tag<a>.) The algorithm described above will
infer a much less precise type fa2 as well, which is unfortu-
nate. The reason is that the OCaml type-checker unifiesith

[ <a>_* ]. Basically, the unification-based type system forgets
about the direction of the data flow. There is some dose ofigitpl
subtyping in the algorithm, but only for the result of XML opéors
(because of the way we interpret them as subtyping - not ggual
constraints).

In order to address this lack of implicit subtyping, we usee p
processing pass whose purpose is to detect which sub-siqes
are of kind XML and to introduce around them a special unary
XML operatori d which behaves semantically as the identity, but
allows subtyping. This preprocessing pass would rewrigectfi-
nition forz1 as:

let z1 : {{[ <a>_* 1}} =
pdige(f {{[<a>[] <b>[] <a>[<b>[]]]"}})

The variableg will then be unified withes andeio with [ <a>_*] .
The additional constraint corresponding to the operator is thus
simply:

[ <a>_*x ] >15

which is satisfied by the same instantiation feias in the original
example. As a consequence, the typezfaris not changed.

The preprocessing pass is quite simple. It consists of anoth
run of the OCaml type-checker, where all the XML types are
considered equal. This allows to identify which sub-expi@ss are
of kind XML. Section 5 describes this pass formally.

Breaking cycles The key condition which allowed us to compute
an instantiation for XML type variables in the example was th
acyclicity of the constraints. As we will see in Section 4eth
acyclicity condition corresponds to the structure of theuxB's
type checker, which does not try to infer argument and regpés
for recursive functions. Of course, this acyclicity prayetoes not
always hold. For instance, let us extend the original examgth
the following definition:

let z3 =f z1

Without the preprocessing pass mentioned above, this line
would force the OCaml type-checker to unify andts. The pre-
processing pass actually replaces this definition by:

let z3 = f id;!2(zl)

11
The type-checker then unifiag; with 5 and t12 with ¢1; the
resulting constraint for d is thus:

L1 > L5

which corresponds to the fact that the outputf ofan flow back
to its input. We observe that the set of constraints has noycle c
between variables;, 15 and.z.

Our type-system cannot deal with such a situation. It would
issue an error explaining that the inferred data flow on XMluga
has a cycle. The programmer is then required to break ettplici
this cycle by providing more type annotations. For instartbe
programmer could use the same annotation as abozd bn

let z1 : {{[ <a>_* 1}} =
f{{ [ <a>[] <b>[] <a>[<b>[]] ] }}

or maybe he will prefer to annotate the input or output type.of

3. Abstract extension of ML

The previous section explained the behavior of OCamIDuggs
checker on a example. It should be clear from this example tha
the type system is largely independent of the actual dedimstiof
values, types, patterns and operators from XDuce and caaild b
applied to other extensions of OCaml as well. In this sectiom

will thus introduce an abstract notion of extension and show
XDuce fits into this notion. This more abstract presentasioould
help the reader to understand the structure of the type eheck
without having to care about the details of XDuce's type exyst

Definition 1. AnextensionX is defined by:

e a set of ground foreign typées;

e a subtyping relation< on 7', which is a partial order with a
binary least-upper bound operataf;

¢ a set of foreign operator®;

o for each operatoro € O: an arity n > 0 and an abstract
semantics : 7" — 7 which is monotone with respect to
on each of its argument.

We use the meta-variabteto range over ground foreign types.
The foreign operators are used to model both foreign value co
structors and operations on these foreign values. Sincaeveat
going to formalize the dynamic semantics, we don’t needdtrdi
guish between these two kinds of operators.

The monotonicity requirement on the abstract semantiagress
the completeness of our resolution strategy for consg&aumbin-
ing the lower bounds for each variable with theperator).

We don’t formalize in this paper the operational semantics o
operators. Instead, we assume informally that it is givesh@m-
patible with the abstract semantics.

XDuce as an extension Now we show how XDuce features can

be seen as an extension. We consider here a simple version of
XDuce, with the following kind of expressions: element dons-

tor aje] (seen as a unary operator), empty sequénceoncatena-
tionei, e2, and pattern matchingatch e withp —e| ... |p —

e. OCamlDuce is actually built on CDuce, which considers for
instance XML element constructors as ternary operatoes téh

and a specification for XML attributes are also considereargs-
ments).



The meta-variable ranges over XDuce patterns. We don'’t

guences of characters (hence string regular expressi@s typd

need to recall here what they are. We just need to know that for patterns), etc.

any patternp we can define an accepted typef, a finite set of
capture variableSar(p), and for any type- and any variable in
Var(p), a typematch[x; p](7) (which represents the set of values
possibly bound ta when the inspected value is+mand the pattern
succeeds).

Here is the formal definition of an extension X for XDuce. The
set of ground foreign type¥ is the set of regular XML tree lan-
guages, that is XDuce types quotiented by the equivalertteetd
by the subtyping relation (types with the same set-theoiater-
pretation are considered equal). The subtyping relatiatirectly
comes from XDuce. The least-upper bound operatoorresponds
to XDuce’s union type constructor (usually writt&n We use the
following families of foreign operators:

e a unary operator for each XML labal a unary operator;
¢ a binary operator corresponding to the concatenation;
¢ a constant operator corresponding to the empty sequence;

o for any patternp and variablex in Var(p), a unary operator
written matchx; p| (its semantics is to return the value bound
to x when matching its argument against the pattgrn

The abstract semantics for all these operators followsthréom
XDuce’s theory.

4. Type system

In this section, we present a type system and a type inference
algorithm for a fixed extensioX . This section and the following
one do not depend on a particular extenslonOur language will

be the kernel of an ML-like type system, enriched with typed a
operators from the extensiox.

Types and expressions The syntax of types and expressions is
given in Figure 1. We use a vector notation to represent sue.
t stands for an n-tupléty, .. ., ts.).

We assume a set of ML type constructors, ranged over by the
meta-variabl®. Each ML type constructor comes with a fixed arity
and we assume all the types to be well-formed with respebieteet
arities. The arrow— is considered as a distinguished binary type
constructor for which we use an infix and right-associativeax.

We assume two infinite families of type variables and foreign
type variables, respectively ranged over by the meta-viasax
and.. Let us emphasize that a foreign type variable cannot appear
within a ground foreign type-. In an expressioila.e, the type
variable . is bound ine. Expressions are considered modulo
conversion of bound type variables. The constructiene thus
serves to introduce a fresh type variableto be used in a type

Element constructor, concatenation and the empty sequenceannotation somewhere

expressions can directly be seen as foreign operatorsisiinis the
case for a pattern matchimgitch e withpr — e1 | ... | pn —

Foreign operators are annotated with the type of their aggisn
(in subscript position) and of their result (in supersdrigite num-

en. We are going to present an encoding of pattern-matching in ber of type arguments is assumed to be coherent with the arity

terms of operators and normal ML expressions. This encoding
rather heavy; in practice, the implementation deals wittiepa
matching directly.

First, we define the translatigh— e of a single branch where

Var(p) = {x1,...,xn} as the expression:
Ax.
let x; = match[x;;p|x in
let x,, = match[x,;p|x in
e
Then, the translation afatch e withpy — e1 | ... | pn —

e, is defined as:

letx =ein

A

wherer; = {p;§ andp; = p;\(m1 U ... U ;1) (the restriction

of p; to values which do not match any pattern from an preceding
branch). The\ operator denotes set-theoretic type difference (in
XDuce, it is a meta-operation; in CDuce, it is part of the tyge-
bra). We have used in this translation a new built-in ML canst
dispatch[ri,..., ] Of type schemeva.(riU.. . UTn) — a —

(a = B) — ... = (e — B) — B, which we assume to be present
in the initial typing environment. Its intuitive semantiissto drop

the first argument (it is used only to force the type-checheetify
thatx has typer; Ll ... U 7, which corresponds to the XDuce’s

pattern matching exhaustivity condition), and to call kﬁlé func-
tional argument{ < k£ < n) on the second argument whérns
the smallest integer such that this argument has type

In principle, the technique described in this paper couldse=
to integrate many of the existing extensions to the origkiauce
design (such as attribute-element constraints [HM03] orl ¢V
ters [Hos04]) without any additional theoretical comptexin its
current form, however, OCamlIDuce integrates all the CDuce e
tensions except overloaded functions: XML attributes aeresi-
ble records, sequence and tree pattern-based iteratongsss se-

dispatch[ri,...,Tn] x x (P} — e1)

the foreign operator. However, in practice, the sourcedagg does
not include the annotations: they are automatically filléih\fresh
foreign type variables by the compiler (we also use this eanv
tion in this paper for some examples). Putting the annatatia
the syntax is just a way of simplifying the presentation. Tien
technical contribution of the paper is an algorithm to injesund
foreign types for the foreign type variables.

The ML(X) fragment We call ML(X) the fragment of our cal-
culus where all the foreign types are restricted to be grotigh
ure 2 defines a typing judgmentt e : t for ML (X). It is ex-
actly an instance of the ML type system [Mil78, Dam85] if we se
ground foreign types as atomic ML types and ground-anndtate
foreign type operatorsZ as built-in ML constants or constructors
(we also introduce explicit type annotation and type vdeatitro-
duction). We recall classical notions of type scheme, ty@nvi-
ronment and generalization. thpe schemeis a pair of a finite set

a of type variables and of a typg, written Va.t. The variables

in & are considered bound in this scheme. We write t if the
typet is an instance of the type schemeA typing environment

is a finite mapping from program variables to type schemes. Th
generalization of a typet with respect to a typing environment
T, written Genr(t) is the type scheméa.t wherea is the set of
variables which are free i, but not inI".

Type-soundness of the ML(X) fragment We assumethat a
soundoperational semantics is given for the X)) calculus. This
amounts to defining-reduction rules for the” operators which
are coherent with the abstract semantics for the foreignabes.
Well-typed expressions in MLX) (in an empty typing environ-
ment, or an environment which contains built-in ML operajor
cannot go wrong. We also assume that the operational sersanti
for anoZ operator depends only an not on the annotations, .
This allows us to lift the semantics of MIX) to the full calculus

of Figure 1.

Typing problems A substitution ¢ is an idempotent function
from types to types that maps type variables to types, fargige



€ u= Foreign types: | e = Expressions:
T ground foreign type X program variable
L foreign type variable Ax.e abstraction

ee application

t o= Types: letx=eine local definition
Pt constructed (e:t) annotation
«@ type variable Ja.e existential variable
€ foreign type o foreign operator

Figure 1. Types and expressions

') <t Ix:ti1He:ts T'Fep:ti — ta T'Fes:ts T'kej:t I x:Genr(t1) Fe2: t2
I'kFx:t I'FAxe:t1 — to I'kejes: to I'Fletx=ejines: to
I'ke:t Ikefto/a] : t o(f) <7
FH(e:t):t '3a.e:t F'For:Ti — ... > Th —T

Figure 2. Type system for the M{X) fragment

variables to foreign types, ground foreign types to themeseland
that commutes with ML type constructors. We use a post-fianot
tion to denote a capture-avoiding application of this sititsbn to
typing environments, expressions, types or constraints.

A substitutiong: is more generalthan a substitutioes if ¢2 =
¢ o $11.(Or equivalently, because substitutions are idempotent:
there exists a substitutiahsuch thatpe = ¢ o ¢1.)

A typing problem is a tuple(T', e, t). (Usually, t is a fresh
type variable.) Asolution to this problem is a substitutiof such
thatT'p - e¢ : to is a valid judgment in MILX). We will now
rephrase this definition in terms of a typing judgment on thie f
calculus. This judgmerit x e : t is defined by the same rules as
in Figure 2, except for foreign operators, for which we take:

I'kxosi:ier— ... > ep — ¢

Typing environment and type schemes that are used in thenexg
Fx are allowed to contain foreign type variables. We say that
is a pre-solution to the typing problem(T', e, t) if the assertion
'y Fx e¢ : t¢ holds. Of course, the new rule for foreign operators
forgets the constraints that relates the input and outmestyof
foreign operators. In order to ensure type soundness, weatags
enforce these constraints.

Formally, we define @onstraint C as a finite set of annotated
foreign operators:. We writel- C if all the elements of are of
the formoZ with &(7) < 7. For an expression, we collect in a
constraintC(e) all the instances of foreign operatarsthat appear
in e. Note that for any substitutiog, we haveC(e)¢ = C(eg).

We are ready to rephrase the notion of solution.

Lemma 1. A substitution¢ is a solution to the typing problem
(T, e, t) if and only if the following three assertions hold:

e I'¢, e¢p andt¢ do not contain foreign type variables;
e ¢ is a pre-solution to the typing problem;

o IF Cled).

Type soundness Type soundness for our calculus is a trivial con-
sequence of the type soundness assumption for theXMlfrag-
ment. Indeed, we can see a solutipto a typing problem(T’; e, t)

as arelaborationinto a well-typed program in this fragment.

1 As usual, the symbal denotes the composition of functions. The compo-
sition of two substitutions is not in general a substitution

Typeinference Let us consider a fixed typing proble(f, e, t).
We want to find solutions to this problem. Thanks to Lemma 1, we
will split this task into two different steps:

¢ find a most-general pre-solutiah;

¢ instantiate the remaining foreign type variables so astiefga
the resulting constraint.

It is almost straightforward to adapt unification-basedseng
algorithms for ML type inference (and their implementatipho
compute a most general pre-solution if there exists a plgiso,
or to report a type error otherwise. Indeed, the typing juelgth x
is very close to a normal ML type system. In particular, iisfas
a substitution lemma: iF Fx e : t, thenl'¢ Fx e¢ : t¢ for any
substitutiong.

Of course, if the typing problem has no pre-solution, it has n
solution as well. For the remaining of the discussion, welsEs
given a most general pre-solutign. Let us writeV for the set of
foreign type variables that appear(ifgo, e¢o, t¢o) andCy for the
constraintC(ego).

A solution to the typing problem is in particular a pre-saat
As a consequence, a substitutigns a solution if and only itp =
¢ o ¢o and if it maps foreign type variables In to ground foreign
types in such a way thdt Co¢. The “minimal” modification we
need to bring tap, to get a solution is to instantiate variables in
V so as to validat€,. Formally, we define golventas a function
p : V. — T such that- Cop. To any solvenp, we can associate a
solution¢ defined byt¢ = t¢op and any solution is less general
than the solution obtained this way from some solvent. Itigaar,

a solution exists if and only if a solvent exists. So we are now
looking for a solvent.

We won'’t give acompletealgorithm to check for the existence
of a solvent. This would lead to difficult constraint solvipgob-
lems which might be undecidable (this of course depends en th
extensionX). Even if they are decidable for a given extension,
they might be intractable in practice and so we prefer tdkgtic
our design guideline that type inference shouldn’t be $icgmtly
more complicated than both ML type inference and XDuce-like
type inference. XDuce computes in a bottom-up way, for eabh s
expression, a type which over approximates all the possibte
comes of this sub-expression. The basic operations andtjfpei
ing discipline corresponds respectively to our foreignrape's and
their static semantics. XDuce's type system uses subsametily



when necessary (e.g. to join the types of the branches ofterpat
matching, or when calling a function). So we can say that XDuc
tries to compute a minimal type for each sub-expression, by a
plying basic type-checking primitives. We will do the saraed to
make it work, we need some acyclicity property, which cqroegls

to the bottom-up structure of XDuce’s type checker.

Definition 2. LetC be a constraint. We write, ~ 5 if C contains
an elemenbg such thate = ¢ and¢; appears ire. We say that
is acyclicif the directed graph defined by this relation is acyclic.

Our type inference algorithm only deals with the case of an
acyclic constrainty (this condition does not depend on the partic-
ular choice of the most general pre-solution). If the cdodits not
met, we issue an error message. It is not a type error witlkectsp
the type system, but a situation where the algorithm is irpleta.

Remark. The acyclicity criterion is of course syntactical (it does
not depend on the semantics of constraints but on their gyrtat

it is not defined in terms of a specific inference algorithrstéad,

it is defined in terms of the most-general pre-solution of dnlie
type system. In particular, it does not depend on implentiemta
details such as the order in which sub-expression are tyyaeiced.

Below we furthermore assume that is acyclic. We define the
functionpo : V' — T by the following equation:

Yiee Vi = I_l{f)(s_’po) | oz € Co}

The acyclicity condition ensures that this definition isielnded
and yields a unique functiop. Furthermore, this function is a
solvent if and only if the typing problem has a solution. Teck
this property, only constraints whose right-hand side isauigd
foreign type need to be considered:

(1) YoZ € Co.06(Epo) <1
Also, any other solvent is such that:
Vee Voo < ip

In other words, under the acyclicity condition, we can chieck
very simple way whether a given typing problem has a solution
and if this is the case, we can compute the smallest solventhé
point-wise extension of the subtyping relation). This comagion
only involves one call to the abstract semantics for eaclicgin

of a foreign operator in the expression to be type-checked.

Remark. In some cases, it is possible to find manifest type errors
even when the constraint is not acyclic. In practice, the mata-

tion of po, the verification of1), and the check for acyclicity can
be done in parallel, e.g. with a deep-first graph traversaialthm.

It can detect some violation @1) before a cycle. In this case, we
know that the typing problem has no solution, and thus a prope
type error can be issued.

Manually working around the incompleteness When the algo-
rithm described above infers a cyclic constraint, it cantetect
whether the typing problenl’, e, t) has a solution or not. How-
ever, we have the following property. If a solutignexists, then
we can always produce an expressidby adding annotations @
such that the algorithm succeeds for the typing prob{&me’; t)
and thate is equivalent (for the equivalence induced by the more-
general ordering) to the solutiaty computed by the algorithm.

In other words, even if the algorithm is not complete (beeaus
of the acyclicity condition) and makes a choice between most
general solutions (the smallest one for the subtypingiceigtfor
any solution to a typing problem, the programmer can alwalgs a
annotations so that the algorithm infers this very solufjonan
equivalent one).

Partial operators The foreign operators were assumed to be total.
This means they should apply to any foreign value. We canlsi@u
partial operators by adding a new top eleméntto the set of
ground foreign typed’, and by requiring the abstract semantics
of operators to be such that whenever an argument ihe result

is alsoT. Since the typing algorithm infers the smallest solvent for
foreign type variables, we can simply look at it and check tia
foreign type variable is mapped 0.

5. Strengthening

As we mentioned above, we can see the type system for thduslcu
as an elaboration into its MX') fragment, which immediately
gives type soundness.

In this section, we consider another elaboration from theuea
lus into itself. Namely, this elaboration is intended to Isedias a
preprocessing pass (rewriting expressions into expresksia or-
der to make the type system accept more programs. We call this
elaboration procedure strengthening.

The issue addressed by strengthening is a lack of impliti su
sumption in our calculus. We already hinted at this issuedn-S
tion 2. We will now give more examples.

Subsumption missing in action We consider the typing problem
(T'1,e1,B) wherel'y = {x: 71,y : 72, f : Va. « - o — a} and
e1 = f x y. It admits a solution if and only if; = 7. In a system
with implicit subtyping, we might expect to give type= 71 LI 72
to bothx andy, so that the application succeeds and the result type
IST.

Similarly, the expressiofiixz.x :
even ifr; < 72 (unlessr; = 72).

71 — T72) IS not well-typed

A naive solution Let us see how to implement the amount of
implicit subtyping we need to make these examples typekchec
The following rule could be a reasonable candidate as artiaddi
to the type system (we write< for the new typing judgment):

I'kF<e:r

Ihk<e:t

/
T<T

A concrete way to see this rule is that any subexpressioran
be magically transformed to the applicatipd> e’, whereid is a
distinguished foreign operator such that(7) = 7 ande, 12 are
fresh foreign type variables.

The type system extended with this rule would accept the ex-
amples given above to illustrate the lack of implicit subgem
tion. However, this rule as it stands would add a lot of comple
ity to the type inference algorithm. As a matter of fact, thipet
system would not admit most-general pre-solutions anynmde
can see this on a very simple example with the typing problem
({x : 7},%,a). We could argue that a more liberal definition of
being more-general should allow some dose of subtypingeSgs|
consider the more complex examjile = {f : Va. « — o« — a}
andes = A\x.Ay.\z.\g.g (f xy) (f x z). In ML, the inferred type
scheme would b&¥a, . - @ — o — (0« - a — () —
which forces the first three arguments to have the same typte. B
if the arguments turn out to be of a foreign-type, anotherilfaof
types for the function is possible, naméig.m, — 7 — 73 —

((m Ume) — (i Umg) — B) — B, and these types cannot be
obtained as instances of the ML type scheme above.

A practical solution We will now describe a practical solution.
Instead of modifying the type system by adding a new subsoempt
rule, we will formulate the extension as a rewriting pre@ssing
pass. The rewriting consists in inserting applicationsefitlentity
foreign operatorid. The challenge is then to choose which sub-
expressiong’ should be rewritten tdad e’. If we had an oracle



to tell us so, the composition of the rewriting pass and thee ty
system of Section 4 would be equivalent to the type system
Unfortunately, we don’t have such an oracle. We could trytte!
possible choices of sub-expressions, and this would gicermptete
type-checking algorithm for the type systém.

We prefer to use a computationally simpler solution. We also
expect it to be simpler to understand by the programmer. dée i
is to use an incomplete oracle. The oracle first runs a spesision
of an ML type-checker on the expression to be type-checkbi. T
type-checker identifies all the foreign types together. &fiect is
to find out which sub-expressions have a foreign type in appat
derivation, that is, which sub-expression have necegsafibreign
type in all the possible derivations. The preprocessing passists
in adding an application of the identity operator above ladise
sub-expressions and only those.

The important point here is that the oracle may be overlyeons
vative. Let us consider a type variable which has been gkreda
in the principal derivation. In a non-principal derivatjah could
have been instead instantiated to a foreign type. If thig/algon
had been considered instead of the principal one, the pregsng
pass would have added more applications of the identityabper
Maybe this would have been necessary in order to make thi-resu
ing expression type-check. An example is given by the espras
leth=esin(h:m1 > 12— 71— (MUm) — (nU7) —

t) — t) wherees is from the example above. Here, the prepro-
cessing pass succeeds but does not change the expressaosédec
no sub-expression has a foreign type in the principal typevale
tion. The type-scheme inferred foris a pure ML type-schema,
which makes the type-system subsequently fail on the esiores

We believe that this restriction of tfec system is reasonable. It
can be implemented very simply by reusing the same typekehec
as in Section 4 in a different mode (where all the foreign $ypen
be unified). The simple examples at the beginning of thisigect
are now accepted. Indeed, the preprocessing pass trasstbhem
expressions t&f (id x) (id y) and ((Ax.id x) : 71 — T2)
respectively. This allows the type systénto use subtyping where
needed.

Properties The strengthening pass cannot transform a well-typed
program into an ill-typed one. Note, however, that it mighgdk

the acyclicity condition if it was already met. See below dowvay

to relax the acyclicity condition.

Also, if strengthening fails, the typing problem has no pre-
solution (for the typing judgmerit), and thus no solution. How-
ever, it is not true that if it succeeds, a pre-solution ngaely
exists (for the new program where applications of ilkdeopera-
tors have been added). As an example, let us consider tlagisitu
wherel’ = {x: 71 — 71,y : 72 — T2,f : Va. o — a — a}
ande = f x y. The preprocessing succeeds, because all the for-
eign types are considered equal but does not touch the siqmes
(because no sub-expression has a foreign type in a printyipal
ing derivation). Still, the next pass of the type inferentgmethm
attempts to unify the types; andr> and thus fails.

Relaxing the acyclicity condition Inserting applications of thid
operator can break the acyclicity condition. We can acjuallax
this condition to deal with thed operator more carefully. Let us
consider a constraint with a cycle:; NN 11, such that
all the edges in this cycle come from elements of the fdﬁﬁ.
Clearly, any solvenp such that- Cp will map all the; in the
cycle to the same ground foreign type. So instead of corisigler
the most-general pre-solution and then face a cyclic caimstwe
may as well unify all these; first: all the solutions can still be
obtained from this less-general pre-solution.

The relaxed condition is: There must be no cycle in the con-
straint except maybe cycles whose edges are all producekeby t
id operator.

To illustrate the usefulness of the relaxed condition, feton-
sider the expressioa = fix(Ag.Ax.f c (gx)) withT = {fix :
Va.(a — a) = o,f : YVa.aw — a — a,c : 7}. The strength-
ening pass builds a principal typing derivation foin a type al-
gebra where all the foreign types are identified. Here is fich
derivation, where we write for foreign types and = a — «,
I"=T,g:t,x: a(we collapse rules for multiple abstraction and
application):

'hFf:ix—%x— %

I'Fg:t I'kFx:a
I'Fgx:x
I'Ffc(gx):*
PFfix: (t—t)—t F'FAgXxfc(gx):t—t
FFe:a—x%

I'Fc:x*

On this principal derivation, we observe three sub-exjoass
of a foreign type. Accordingly, strengthening introduckeee in-
stances of thed operator and thus rewrites the expression to:

¢ = fix(AgAx.id? (£ (1d ¢) (1! (gx))))

The type-checker which is then applied performs some unifica
tions: v1 = a4 = g, L2 ts, t3 = 7. We can for instance as-
sume that the computed most-general pre-solution mapad s

to ¢1 andes to 2. The first and third instances of thé operator

in ¢’ thus generate the dependenajescfg 12 andis 2 11. Strictly
speaking, the constraint is cyclic, but we can break theecgith-

ply by unifying 1 and.2. The smallest solvent is then given by
t1p = 7. We would have obtained the same solution if we had ap-
plied the type-checker directly anwithout the strengthening pass.
In this example, strengthening is useless and the relaxedicity
condition is just a way to break a cycle introduced by strieeging.

We can easily imagine more complex examples where stremgthe
ing is really necessary but introduces cycles that can bieebrby

the relaxed condition.

6. Integrationin OCaml

We have described a type system for basic ML expressions. Of
course, OCaml is much more than an ML kernel. We found no
problem to extend it to deal with the whole OCaml type system,
cluding recursive types, modules, classes, and other faatyres.
The two ML-like typing passes (the one used during stremgtize
and the one using for the real type-checking) are done onewhol
compilation units (in the toplevel, they are done on eaclagphy.
The information from the compilation unit interface (themi

file) is integrated before checking the acyclicity condititndeed,
this information acts as additional type annotations onveddaes
exported by the compilation unit and can thus contributedo o
taining this condition. Also, in addition to type annotatsoon ex-
pressions, OCaml provides several ways to introduce ekplige
informations (and thus obtain the acyclicity conditiongtatype
definitions (explicit types for constructor and exceptiogLements,
record fields), module signatures, type annotations on Mtepa
variables.

Because of its global flow analysis flavor, OCamlDuce’s type
system is much less modular than OCaml’s. In particularthel
call sites of a function which expects XML values as argumment
can contribute to the result type of the function. In prastito
alleviate this lack of modularity and to get better error sag®es,



the programmer should probably give more type annotatioas t
what it strictly required.

OCaml subtyping OCaml comes with a structural subtyping rela-
tion (generated by object types and polymorphic variariéyging
and extended structurally by considering the variance oftifie
constructors). The use of this subtyping relation in progrds ex-
plicit. The syntax ife : t1 :> t2) (sometimes, the type; can be
inferred) and it simply checks that is a subtype ot,. Of course,
the OCaml subtyping relation has been extended in OCaml@uce
take XDuce subtyping into account. For instance; ifs a XDuce
subtype ofr. ande has typer;1ist, then it is possible to coerce it
to typer: list: (e :> 72 list).

Crossing theboundary In our system, XDuce values are opaque
from the point of view of ML and XDuce types cannot be iden-
tified with other ML type constructors. Sometimes, we need to
convert values between the two worlds. For instance, we have
foreign typeSt ri ng which is different from OCamkt ri ng.
This foreign type conceptually represents immutable secpse

of arbitrary Unicode characters, whereas the OCaml typeldho
be thought as representing mutable buffers of bytes. As a con

CDuce. The interface is actually quite simple: each mongimor
OCaml typet is mapped in a structural way to a CDuce type

A value defined in an OCaml module can be used from CDuce
(the compiler introduces a natural translation— t). Similarly,

it is possible to provide an ML interface for a CDuce moduke= t
CDuce compiler checks that the values exported by the module
are compatible with the ML-to-CDuce translation of thespety
and produces stub code to apply a natural translatior t to
these values. This CDuce/OCaml interface is used by manyc€Du
users and served as a basis to theml and from ml operators
described in Section 6.

Sulzmann and Zhuo Ming Lu [SLO5] pursue the same objective
of combining XDuce and ML. However, their contribution is or
thogonal to ours. Indeed, they propose a compilation sctieone
XDuce into ML such that the ML representation of XDuce val-
ues is driven by their static XDuce type (implicit use of sytng
are translated to explicit coercions). Their type systeppsus in
addition used-defined coercions from XDuce types to ML types
However, they do not describe a type inference algorithnteir
abstract specification of a type system and do not study thesicr
tion between XDuce type-checking and ML type inference (¥®u

sequence, we don’'t even try to collapse these two types into code can call ML functions but their type must be fully known)

a single one. Instead, OCamIDuce comes with a runtime li-
brary which exports conversion functions suchUag 8. nake:
string -> String, Uf8.get: String -> string
and Latinl. make: string -> Latinl, Latinl. get:
Latinl -> string.Thetype.ati nlisasubtype oSt ri ng:

it represents all the strings which are only made of latirkdrac-
ters (latin-1 is a subset of the Unicode character set). Whetion

Ut f 8. make checks at runtime that the OCaml string is a valid
representation of a Unicode string encoded in utf-8.

Similarly, we often need to translate between XDuce's se-
qguences and OCaml’s lists. For any XDuce typave can easily
write two functions of typegr«] — 7 list andr list — [7%]

(the star between square brackets denotes Kleene-star)ady,

we can imagine a natural XDuce counterpart of an OCaml ptoduc
typer: X 72, namely[; 72], and coercion functions. However, writ-
ing this kind of coercions by hand is tedious. OCamIDuce me
with built-in support to generate them automatically. Thigo-
matic system relies on a structural translatios@heOCaml types
into XDuce types: lists and arrays are translated to Klestae-
types, tuples are translated to finite-length XDuce segnari-
ant types are translated to union types, etc. Some OCand sy

as polymorphic or functional types cannot be translateda®ic
Duce comes with two magic unary operators_mi , f rom_m
(both written{: ...:} in the concrete syntax). The first one
takes an XDuce value and applies a structural coercion toat-i
der to obtain an OCaml value; this coercion is thus drivenhay t
output type of the operator. The type-checker requires tifpe

to be fully known (polymorphism is not allowed). Similarihe
operatorf rom nl takes an OCaml value and apply a structural
coercion in order to obtain an XDuce value. Since the typaof i
input drives its behavior, the type-checker requires e tto be
fully known.

This system can be used to obtain coercions from complex
OCaml types (e.g. obtained from big mutually recursive dlidims

These last points are precisely the issues tackled by ouricon
bution. For instance, our system makes it possible to avaides
type annotation on non-recursive XDuce functions. Anotier-
ence is that in our approach, the XDuce/CDuce type checleér an
back-end (compilation of pattern matching) can be re-usitd-w
out any modification whereas their approach requires a cetepl
reengineering of the XDuce part (because subtyping anerpatt
matching relations must be enriched to produce ML code) and i
is not clear how some XDuce features such asAhg type can
be supported in a scenario of modular compilation. We belaw
approach is more robust with respect to extensions of XDuade a
that the XDuce-to-ML translation can be seen as an altemnati-
plementation technique for XDuce which allows some intiéoac
between XDuce and ML (the same kind of interaction as what can
be achieved with the CDuce/OCaml interface described dbove

The Xtatic project [GPO03] is another example of the integra-
tion of XDuce types into a general purpose language, nam#ly C
Since both C#'s and XDuce’s type checkers operate with botto
up propagation (explicit types for functions/methods, ygetinfer-
ence), the structure of Xtatic type-checker is quite simple real
theoretical contribution is in the definition of a subtypireation
which combines C# named subtyping (inheritance) and XDeate s
theoretic subtyping. Since the resulting type algebra doésiave
least-upper bounds, the nice locally-complete type imfegealgo-
rithm for XDuce patterns [HP02] cannot be transferred taixtdn
Xtatic, XDuce types and C# types are stratified, but the twge-al
bras are mutually recursive: XDuce types can appear in diefés
nitions and C# classes can be used as basic items in XDudartegu
expression types. This does not really introduce any diffidoe-
cause C# types are not structural. The equivalent in OCacaDu
would be to allow OCaml abstract types as part of XDuce types,
which would not be difficult, except for scoping reasons {ats
types are scoped by the module system).

In the last ten years, a lot of research effort has been pat int

of concrete types) to XDuce types, whose values can be seen agleveloping type inference technigues for extensions of Mthw

XML documents. This gives parsing from XML and pretty-piigf
to XML for free.

7. Related work

The CDuce language itself comes with a typed interface with
OCaml. The interface was designed to: (i) let the CDuce progr
mers use existing OCaml libraries; (ii) develop hybrid poig
where some modules are implemented in OCaml and other in

subtyping and other kinds of constraints. For instancelieé X )
framework [OSW99] could serve as a basis to express the type
system presented here. The main modification to bring tq MM
would be to make foreign-type variables global. Another way
express it is to disallow constraints in type-schemes (Wwiiavhat

we do in the current presentation). We have chosen to present
system in a setting closer to ML so as to make our message more



explicit: our system can be easily implemented on top oftegs [Dam85]
ML implementations.

8. Conclusion and future work [Frio4]

We have presented a simple way to integrate XDuce into OCaml.
The modification to the ML type-system is small enough so as to
make it possible to easily extend existing ML type-checkers
Realistic-sized examples of code have been written in O€aml
Duce, such as an application that parses XML Schema docement
into an internal OCaml form and produces an XHTML summary of [HFCO5]
its content. Compared to a pure OCaml solution, this OCarm¢Du
application was easier to write and to get right: XDuce'setgys- [HMO3]
tem ensures that all possible cases in XML Schema are tregted
pattern-matching and that no invalid XHTML output can be-pro
duced). We refer the reader to OCamlDuce’s website for theceo
code of this application. [Hos00]
The main limitation of our approach is that it doesn't allosrg-
metric polymorphism on XDuce types. Adding polymorphism to [Hos04]
XDuce is an active research area. In a previous work with so
and Castagna [HFCO5], we presented a solution where potymor
phic functions must be explicitly instantiated. Integngtihis kind [HPOO]
of polymorphism into the same mechanism as ML polymorphism
is challenging and left for future work. The theory recerdwvel-
oped by Vouillon [Mou06] could be a relevant starting pomt$uch [HPO2]
a task.
Another direction for improvement is to further relax the
acyclicity conditions, that is, to accept more programshuiitt [HPO3]
requiring extra type annotations. Once the set of consgraap-
resenting XML data flow and operations have been extracted by
the ML type-checker, we could use techniques which are more [HVPOO]
involved than simple forward computation over types. Traist
analysis algorithm used in Xact [KMS04] could serve as disigr
point in this direction.

[GPO3]
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