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Abstract

This paper presents our compilation strategy to produce efficient
code for pattern matching in the CDuce compiler, taking into
account static information provided by the type system. Indeed,
this information allows in many cases to compute the result (that
is, to decide which branch to consider) by looking only at a small
fragment of the tree. Formally, we introduce a new kind of de-
terministic tree automata that can efficiently recognize regular
tree languages with static information about the trees and we
propose a compilation algorithm to produce these automata.

1 Introduction

Emergence of XML has given tree automata theory a re-
newed importance[Nev02]. Indeed, XML schema lan-
guages such as DTD, XML-Schema, Relax-NG describe
more or less regular languages of XML documents (con-
sidered as trees). Consequently, recent XML-oriented
typed programming languages such as XDuce [Hos00,
HP02], CDuce [BCF03, FCB02], Xtatic [GP03] have type
algebras where types denote regular tree languages. The
type system of these languages relies on a subtyping re-
lation, defined as the inclusion of the regular languages
denoted by types, which is known to be a decidable prob-
lem (new and efficient algorithms have been designed for
this purpose, and they behave well in practice).

An essential ingredient of these languages is a power-
ful pattern matching operation. A pattern is a declarative
way to extract information from an XML tree. Because
of this declarative nature, language implementors have to
propose efficient execution models for pattern matching.

This paper describes our approach in implementing pat-

tern matching in CDuce1. To simplify the presentation,
the paper studies only a restricted form of pattern match-
ing, without capture variable and with a very simple kind
of trees. Of course, our implementation handles capture
variables and the full set of types and patterns construc-
tors in CDuce. In the simplified form, the pattern match-
ing problem is a recognition problem, namely deciding
whether a treev belongs to a regular tree languageX or
not.

1. If the regular language is given by a tree automaton,
a top-down recognition algorithm may have to back-
track, and the recognition time is not linear in the
size of the input tree.

2. It is well-known that any tree automaton can be
transformed into an equivalent bottom-up determin-
istic automaton, which ensures linear execution time;
the size of the automaton may be huge even for sim-
ple languages, which can make this approach unfea-
sible in practice.

3. The static type system of the language provides an
upper approximation for the type of the matched tree
v, that is some regular languageX0 such thatv is
necessarily inX0. Taking this information into ac-
count, it should be possible to avoid looking at some
subtree ofv. However, classical bottom-up tree au-
tomata are bound to look at the whole tree, and they
cannot take this kind of static knowledge into ac-
count.

Let us give an example to illustrate the last point. Con-
sider the following CDuce program:

1CDuce is available for download athttp://www.cduce.org/ .
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type A = <a>[ A* ]
type B = <b>[ B* ]

let f ((A|B)->Int) A ->0 | B ->1
let g ((A|B)->Int) <a>_->0 | _ ->1

The first lines introduce two typesA andB. They de-
note XML documents with only<a> (resp. <b>) tags
and nothing else. Then two functionsf and g are de-
fined. Both functions take an argument which is either
a document of typeA or of typeB. They return 1 when
the argument is of typeA, and 0 when the argument is of
typeB. The declaration ofg suggests an efficient execu-
tion schema: one just has to look at the root tag to answer
the question. Instead, if we consider only the body off ,
we have to look at the whole argument, and check that ev-
ery node of the argument is tagged with<a> (resp. with
<b>); whatever technique we use - deterministic bottom-
up or backtracking top-down - it will be less efficient than
g.

But if we use the information given by the function in-
terface, we know that the argument is necessarily of type
A or of typeB, and we can compilef exactly as we com-
pile g.

This example demonstrates that taking static informa-
tion into account is crucial to provide efficient execution
for declarative patterns as inf .

The main contribution of this paper is the definition
of a new kind of deterministic bottom-up tree automata,
called NUA (non-uniform automata) and a compilation
algorithm that produces an efficient NUA equivalent to a
given non-deterministic (classical) automaton, taking into
account static knowledge about the matched trees.

Informally, non-uniform automata enrich classical
bottom-up automata with a “control state”. The control
state is threaded through the tree, during a top-down and
left-to-right traversal. In some cases, it is possible to
stop the traversal of a whole subtree only by looking at
the current state. Non-uniform automata combine the ad-
vantage of deterministic bottom-up and deterministic top-
down tree automata, and they can take benefit from static
information.

In order to discriminate several regular tree languages,
a NUA does not necessarily need to consider a given sub-
tree at all. The “magic” of the compilation algorithm is
to compute a NUA that will extract only aminimal set

of information from trees. More precisely, a NUA will
skip a subtree if and only if looking at this tree does not
bring any additional relevant information, considering the
initial static information and the information already gath-
ered during the beginning of the run.

Remark 1.1 A central idea in XDuce-like languages is
that XML document live in an untyped world and that
XML types are structural. This is in contrast with the
XML Schema philosophy, whose data model (after val-
idation) attaches typenamesto XML nodes. Moreover,
in XML Schema, the context and the tag of an element
are enough to know the exact XML Schema type of the
element. In XDuce-like languages, in general, one may
have to look deep inside the elements to check type con-
straints. Our work shows how an efficient compilation of
pattern matching can avoid this costly checks: our com-
pilation algorithm detects when the context and the tag
are enough to decide of the type of an element without
looking at its content. This work supports the claim that
a structural data model̀a la XDuce can be implemented
as efficiently as a data model with explicit type namesà la
XML Schema.

Related work Levin [Lev03] also addresses the imple-
mentation of pattern matching in XDuce-like program-
ming languages. He introduces a general framework (in-
termediate language, matching automata) to reason about
the compilation of patterns, and he proposes several com-
pilation strategies. He leaves apart the issue of using static
types for compilation, which is the main motivation for
our work. So the two works are complementary: our com-
pilation algorithm could probably be re-casted in his for-
malism.

Neumann and Seidl [NS98] introduce push-down au-
tomata to locate efficiently nodes in an XML tree. Our
automata shares with push-down automata the idea of
threading a control-state through the tree. The formalisms
are quite different because we work with simpler kind of
automata (binary trees with labeled leaves, whereas they
have unranked labeled forests), and we explicitly distin-
guish betwen control states (threaded through the tree)
and results (used in particular to update the state). How-
ever, using an encoding of unranked trees in binary trees,
we believe that the two notions of automata are isomor-
phic. But again, they don’t address the issue of using
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static information to improve the automata, which is our
main technical contribution. It should be possible to adapt
our compilation algorithm to their push-down automata
setting, but it would probably result in an extremely com-
plex technical presentation. This motivates us working
with simpler kinds of tree and automata.

2 Technical framework

In this section, we introduce our technical framework. We
consider the simplest form of trees: binary trees with la-
beled leafs and unlabeled nodes. Any kind of ordered
trees (n-ary, ranked, unranked; with or without labeled
nodes) can beencoded, and the notion of regular language
is invariant under these encodings. Using this very simply
kind of trees simplifies the presentation.

2.1 Trees and classical tree automata

Definition 2.1 Let Σ be a (fixed) finite set of symbols. A
treev is either a symbola ∈ Σ or a pair of trees(v1, v2).
The set of trees is writtenV .

CDuce actually uses this form of trees to represent XML
documents: forgetting about XML attributes, an XML el-
ement is represented as a pair(tag, content) wheretag
is a leaf representing the tag andcontent is the encoding
of the sequence of children. The empty sequences is en-
coded as a leafnil, and a non-empty sequence is encoded
as a pair(head, tail). We recall the classical definition of
a tree automaton, adapted to our definition of trees.

Definition 2.2 (Tree automaton) A (non-deterministic)
tree automaton (NDTA)is a pair A = (R, δ) whereR
is a finite set ofnodes, andδ ⊆ (Σ×R) ∪ (R×R×R).

Each noder in a NDTA defines a subsetA JrK of V .
These sets can be defined by the following mutually re-
cursive equations:

A JrK = {a ∈ Σ | (a, r) ∈ δ}∪
⋃

(r1,r2,r)∈δ

A Jr1K×A Jr2K

We writeA JrK2 = A JrK∩V ×V . By definition, a regu-
lar language is a subset of the formA JrK for some NDTA
A and some noder. We say that this language isdefined

by A . There are two classical notions of deterministic
tree automata:

• Top-down deterministic automata (TDDTA) satisfy
the property:{(r1, r2) | (r1, r2, r) ∈ δ} has at most
one element for any noder. These automata are
strictly weaker than NDTA in terms of expressive
power (they cannot define all the regular languages).

• Bottom-up deterministic automata (DTA) satisfy the
property: {r | (r1, r2, r) ∈ δ} has at most one ele-
ment for any pair of nodes(r1, r2), and similarly for
the sets{r | (a, r) ∈ δ} with a ∈ Σ. These automata
have the same expressive power as NDTA.

Remark 2.3 We use the non-standard terminology of
nodes instead of states. The reason is that we are going to
split this notion in two: results and control states. Results
will correspond to nodes in a DTA, and control states will
correspond to nodes in TDDTA.

In order to motivate the use of a different kind of au-
tomata, let us introduce different notions of context. Dur-
ing the traversal of a tree, an automaton computes and
gathers information. The amount of extracted information
can only depend on the context of the current location in
the tree. A top-down recognizer (for TDDTA) can only
propagate information downwards: the context of a loca-
tion is thus the path from the root to the location (“upward
context”). A bottom-up recognizer propagates informa-
tion upwards: the context is the whole subtree rooted at
the current location (“downward context”).

Top-down algorithms are more efficient when the rel-
evant information is located near the root. For instance,
going back to the CDuce examples in the introduction, we
see easily that the functiong should be implemented by
starting the traversal from the root of the tree, since look-
ing only at the root tag is enough (note that because of
the encoding of XML documents in CDuce, the root tag
is actually the left child of the root). Patterns in CDuce
tend to look in priority near the root of the trees instead
of their leafs. However, because of their lack of expres-
sive power, pure TDDTA cannot be used in general. Also,
since they perform independant computations of the left
and the right children of a location in a tree, they cannot
use information gathered in the left subtree to guide the
computation in the right subtree.
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The idea behind push-down automata is to traverse
each node twice. A location is first entered in a given con-
text, some computation is performed on the subtree, and
the location is entered again with a new context. When a
location is first entered, the context is the path from the
root, but also all the “left siblings” of these locations and
their subtrees (we call this the “up/left context” of the lo-
cation). After the computation on the children, the context
also include the subtree. The notion of non-uniform au-
tomata we are going to introduce is a slight variation on
this idea: a location is entered three times. Indeed, when
computing on a tree which is a pair, the automaton con-
siders the left and right subtree in sequence. Between the
two, the location is entered again to update its context, and
possibly use the information gathered on the left subtree
to guide the computation on the right subtree.

This richer notion of context allows to combine the ad-
vantages of DTA and TDDTA, and more.

Due to lack of space, we cannot give more background
information about regular language and tree automata. To
understand the technical details that follow, some famil-
iarity with the theory of tree automata is expected (see for
instance [Nev02] for an introduction to automata theory
for XML and relevant bibliographical references). How-
ever, we give enough intuition so that the reader not famil-
iar with this theory can (hopefully) grasps the main ideas.

2.2 Non-uniform automata

We now introduce a new kind of tree automata: non-
uniform automata (NUA in short). They can be seen as
(a generalization of) a merger between DTA and TDDTA.
Let us call “results” (resp. “control state”) the nodes of
DTA (resp. TDDTA). We are going to use these two no-
tions in parallel. A current “control state” is threaded and
updated during a depth-first left-to-right traversal of the
tree (this control generalizes the one of TDDTA, where
the state is only propagated downwards), and each con-
trol stateq has its own set of resultsR(q). Of course, the
transition relation is parametric inq.

Remark 2.4 We can see these automata as determinis-
tic bottom-up automata enriched with a control state that
makes their behavior change according to the current lo-
cation in the tree (hence the terminology “non-uniform”).

When the automaton is facing a tree(v1, v2) in a state
q, it starts with some computation onv1 using a new state
q1 = left (q) computed from the current one, as for a
TDDTA. This gives a resultr1 which is immediately used
to compute the stateq2 = right (q, r1). Note that con-
trary to TDDTA,q2 depends not only onq, but also on the
computation performed on the left subtree. The computa-
tion onv2 is done from this stateq2, and it returns a result
r2. As for classical bottom-up deterministic automata, the
result for(v1, v2) is then computed fromr1 andr2 (and
q).

Let us formalize the definition of non-uniform au-
tomata. We define only the deterministic version.

Definition 2.5 A non-uniform automatonA is given by a
finite set of statesQ, and for each stateq ∈ Q:

• A finite set of resultsR(q).

• A stateleft (q) ∈ Q.

• For any result r1 ∈ R(left (q)), a state
right (q, r1) ∈ Q.

• For any resultr1 ∈ R(left (q)), and any result
r2 ∈ R(right (q, r1)), a result δ2(q, r1, r2) ∈
R(q).

• A partialfunctionδ0(q, ) : Σ → R(q).

The result of the automaton from a stateq on an input
v ∈ V , written A (q, v), is the element ofR(q) defined
by induction onv:

A (q, a) = δ0(q, a)
A (q, (v1, v2)) = δ2(q, r1, r2)

where r1 = A (left (q), v1)
r2 = A (right (q, r1), v2)

Because the functionsδ0(q, ) are partial, so are the
A (q, ). We write Dom(q) the set of treesv such that
A (q, v) is defined.

Remark 2.6 Note that this definition boils down to that
of a DTA whenQ is a singleton{q}. The set of results
of the NUA (for the only state) corresponds to the set of
nodes of the DTA.

It is also possible to convert a TDDTA to a NUA of the
same size. The set of states of the NYA corresponds to the
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set of nodes of the TDDTA, and all the states have a single
result.

Our definition of NUAs (and more generally, the class
of push down automata [NS98]) is flexible enough to sim-
ulate DTA and TDDTA (without explosion of size). They
allow to merge the benefit of both kind of deterministic
automata, and more (neither DTA nor TDDTA can thread
information from a left subtree to the right subtree).

Neumann and Seidl [NS98] introduce a family of reg-
ular languages to demonstrate that their push-down au-
tomata are exponentially more succint than deterministic
bottom-up automata. The same kind of example applies
for NUAs.

A pair (q, r) with q ∈ Q and r ∈ R(q) is called a
state-resultpair. For such a pair, we writeA Jq; rK =
{v | A (q, v) = r} for the set of trees yielding resultr
starting from initial stateq. The reader is invited to check
that a NUA can be interpreted as a non-deterministic
tree automata whose nodes are state-result pairs. Con-
sequently, the expressive power of NUAs (that is the class
of languages of the formA Jq; rK) is the same as NDTAs
(ie: they can define only regular languages). The point
is that the definition of NUAs gives an efficient execution
strategy.

Running a NUA The definition ofA (q, v) defines an
effective algorithm that operates in linear time with re-
spect to the size ofv. We will only run this algorithm for
treesv which are knowna priori to be inDom(q). This is
because of the intended use of the theory (compilation of
CDuce pattern matching): indeed, the static type system
in CDuce ensures exhaustivity of pattern matching.

An important remark: the flexibility of having a dif-
ferent set of results for each state makes it possible to
short-cut the inductive definition and completely ignore
subtrees. Indeed, as soon as the algorithm reaches a sub-
treev′ in a stateq′ such thatR(q′) is a singleton, it can
directly returns without even looking atv′.

Reduction A first criterion for a NUA to be good is the
following condition:

Definition 2.7 A NUAA is reduced if:

∀q ∈ Q. ∀r ∈ R(q). ∃v ∈ Dom(q). A (q, v) = r

This condition means that any result of any state can be
reached for some tree in the domain of the state. Since
the NUA will skip a subtree if and only if the setR(q) is
a singleton, it is important to enforce this property.

Of course, the set of reachable results can be computed
(this amounts to checking emptiness of states of a NDTA,
which can be done in linear time), and so we can remove
unreachable results.

The point is that we are going to present a top-down
compilation algorithm (it defines a NUA by giving ex-
plicitly for each stateq the set of resultsR(q) and the
transition functions, see Section 3.8). Hence the produced
NUA does not need to be fully built at compile time. Con-
sequently, it is meaningful to say that this construction di-
rectly yields a reduced NUA, and does not require to fully
materialize the automaton in order to remove unreachable
results.

Tail-recursion Running a NUA on a tree requires a size
of stack proportional to the height of the tree. This is
problematic when dealing with trees obtained by a trans-
lation from, say, huge XML trees to binary trees. Indeed,
this translation transforms long sequences to deep trees,
strongly balanced to the right.

The following definition will help us in these cases.

Definition 2.8 A NUA is tail-recursiveif, for any state
q ∈ Q:

∀r1 ∈ R(left (q)).∀r2 ∈ R(right (q, r1)).
δ2(q, r1, r2) = r2

The idea is that a tail-recursive NUA can be imple-
mented with a tail-recursive call on the right subtree. The
stack-size used by a run of the NUA is then proportional to
the largest number of “left” edges on an arbitrary branch
of the tree.

The theorem above shows how to turn an arbitrary
NUA into a tail-recursive one.

Theorem 2.9 LetA be an arbitrary NUA, andA ′ be the
NUA defined by:

Q′ = {(q, q′, σ) | q, q′ ∈ Q, σ : R(q) → R(q′)}
R((q, q′, σ)) = σ(R(q))
left ((q, q′, σ)) = (left (q), q, Id)
right ((q, q′, σ), r1) = (right (q, r1), q

′, σ ◦ δ2(q, r1, ))
δ2((q, q′, σ), r1, r2) = r2

δ0((q, q′, σ), a) = σ ◦ δ0(q, a)
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Then:

• A ′ is tail-recursive

• For any treev: A ′((q, q′, σ), v) = σ ◦A (q, v)

• If A is reduced, thenA ′ is also reduced.

When the original automaton enters the right subtree, the
set of results changes: a result returned by the computa-
tion on the right subtree will have to be translated to make
it compatible with the set of result for the current location.

The idea is to push this translation in the computation
on the right subtree. This is done by encoding the trans-
lation in the control state passed to the right subtree. In
a triple (q, q′, σ), the real “control-state” isq andσ en-
codes the translation from results ofq to result ofq′. This
means that if(q, q′, σ) is the current control state of the
new NUA, thenq would be the control state of the origi-
nal NUA at the same point of the traversal, andσ would
be the translation to be applied to the result by ancestors.

Remark 2.10 If for some stateq, anyR(right (q, r1))
is a singleton{σ′(r1)}, it is possible to implement this
state with a tail recursive-call on the left-subtree; in the
construction above, we would take:left (q, q′, σ) =
(left (q), q′, σ ◦ σ′)

3 The algorithm

Different NUA can perform the same computation with
different complexities (that is, they can ignore more or
fewer subtrees of the input). To obtain efficient NUA, the
objective is to keep the set of resultsR(q) as small as
possible, because whenR(q) is a singleton, we can drop
the corresponding subtree.

Also, we want to build NUAs that take static informa-
tion about the input trees into account. Hopefully, we have
the opportunity of definingpartial states, whose domain
is not the whole set of trees.

In this section, we present an algorithm to build an ef-
ficient NUA to solve the dispatch problem under static
knowledge. Namely, givenn + 1 regular languages
X0, . . . , Xn, we want to compute efficiently for any tree
v in X0 the set{i = 1..n | v ∈ Xi}.

3.1 Intuitions

Let us consider four regular languagesX1, X2, X3, X4,
and letX = (X1 ×X2) ∪ (X3 ×X4). Imagine we want
to recognize the languageX without static information
(X0 = V ). If we are given a tree(v1, v2), we must first
perform some computation onv1. Namely, it is enough
to know, after this computation, ifv1 is in X1 or not, and
similarly for X3. It is not necessary to do any other com-
putation; for instance, we don’t care whetherv1 is in X2

or not. According to the presence ofv1 in X1 and/orX3,
we continue with different computations ofv2:

• It v1 is neither inX1 nor in X3, we already know
thatv is not inX without looking atv2. We can stop
the computation immediately.

• If v1 is in X1 but not in X3, we have to check
whetherv2 is in X2.

• If v1 is in X3 but not in X1, we have to check
whetherv2 is in X4.

• If v1 is in X1 and inX3, we must check whetherv2

is in X2 or not, and inX4 or not. But actually, this
is too much work, we only have to find whether it is
in X2 ∪ X4 or not, and this can be easier to do (for
instance, ifX2 ∪ X4 = V , we don’t have anything
to do at all).

This is the general case, but in some special cases, it is not
necessary to know both wgtherv1 is in X1 and whether
it is in X3. For instance, imagine thatX2 = X4. Then
we don’t have to distinguish the three casesv1 ∈ X1\X3,
v1 ∈ X3\X1, v1 ∈ X1 ∩ X3. Indeed, we only need to
check whetherv1 is in X1 ∪X3 or not. We could as well
have mergedX1×X2 andX3×X4 into (X1∪X3)×X2

in this case. We can also merge them if one is a subset of
the other.

Now imagine we have some static informationX0. If
for instance,X0 ∩ (X1 × X2) = ∅, we can simply ig-
nore the rectangleX1 × X2. Also, in general, we de-
duce some information aboutv1: it belongs toπ1(X0) =
{v0

1 | (v0
1 , v0

2) ∈ X0}. After performing some computa-
tion on v1, we get more information. For instance, we
may deducev1 ∈ X1\X3. Then we know thatv2 is in
π2(X0 ∩ (X1\X3)×V ). In general, we can combine the

6



static information and the results we get for the a left sub-
tree to get a better static information for the right subtree.
Propagating a more precise information allows to ignore
more rectangles.

The static information allows us to weaken the condi-
tion to merge two rectanglesX1 ×X2 andX3 ×X4. In-
deed, it is enough to check whetherπ2(X0∩(X1×X2)) =
π2(X0∩ (X3×X4)) (which is strictly weaker thanX2 =
X4).

In some cases, there are decisions to make. Imagine
thatX0 = X1 × X2 ∪ X3 × X4, and we want to check
if a tree (v1, v2) is in X1 × X2. If we suppose that
X1 ∩ X3 = ∅ andX2 ∩ X4 = ∅, we can work onv1

to see if is inX1 or not, or we can work onv2 to see if
is in X2 or not. We don’t need to do both, and we must
thus choose which one to do. We always choose to per-
form some computation onv1 if it allows to gain useful
knowledge onv. This choice allows to stop the top-down
left-to-right traversal of the tree as soon as possible. This
choice is relevant when considering the encoding of XML
sequences and trees in our binary trees. Indeed, the choice
correspond to:(1) extracting information from an XML
tag to guide the computation on the content of the ele-
ment, and(2) extracting information from the first chil-
dren before considering the following ones.

3.2 Types

We have several regular languagesX0, X1, . . . , Xn as in-
puts, and our algorithm needs to produce other languages
as intermediate steps.

Instead of working with several different NDTA to de-
fine these languages, we assume that all the regular lan-
guages we will consider are defined by the same fixed
NDTA A (each language is defined by a specific state
of this NDTA). This assumption is not restrictive since it
is always possible to take the (disjoint) union of several
NDTA. Moreover, we assume that this NDTA has the fol-
lowing properties:

• Boolean-completeness.The class of languages de-
fined byA (that is, the languages of the formA JrK),
is closed under boolean operations (union, intersec-
tion, complement with respect toV ).

• Canonicity. If (r1, r2, r) ∈ δ, then: A Jr1K 6=
∅,A Jr2K 6= ∅. Moreover, if we consider another

pair(r′1, r
′
2) 6= (r1, r2) such that(r′1, r

′
2, r) ∈ δ, then

A Jr1K ∩A Jr′1K = ∅ andA Jr2K 6= A Jr′2K.

It is well-known that the class of all regular tree lan-
guages is closed under boolean operations. The first
property says that the class of languages defined by the
fixed NDTA A is closed under these operations. Start-
ing from an arbitrary NDTA, it is possible to extend it
to a Boolean-complete one. Ifr1, r2 are two nodes, we
write r1 ∨ r2 (resp. r1 ∧ r2, ¬r1) for some noder such
that A JrK = A Jr1K ∪ A Jr2K (resp. A Jr1K ∩ A Jr2K,
V \A Jr1K).

The Canonicity property forces a canonical way to de-
compose the setA JrK2 as a finite union of rectangles
of the formA Jr1K × A Jr2K. For instance, it disallows
the following situation: {(r1, r2) | (r1, r2, r) ∈ δ} =
{(a, c), (b, c)}. In that case, the decomposition ofA JrK2

given by δ would have two rectangles with the same
second component. To eliminate this situation, we can
merge the two rectangles, to keep only(a ∨ b, c). We
also want to avoid more complex situations, for instance
where a rectangle in the decomposition ofA JrK2 is cov-
ered by the union of others rectangles in this decomposi-
tion. It is always possible to modify the transition relation
δ of a Boolean-complete NDTA to enforce the Canonic-
ity property (first, by splitting the rectangles to enforce
non-intersecting first-components, and then by merging
rectangles with the same second component).

We will use the word “type” to refer to the nodes of our
fixed NDTA A . Indeed, they correspond closely to the
types of the CDuce (internal) type algebra, which sup-
port boolean operations and a canonical decomposition of
products. Note that the set of types is finite, here. We
write JtK instead ofA JtK, ∆2(t) = {(t1, t2) | (t1, t2, t) ∈
δ}, and∆0(t) = {a | (a, t) ∈ δ}. This allows us to reuse
the symbolsA , r, . . . to refer to the NUA we will build,
not the NDTA we start from.

3.3 Filters

Even if we start with a single check to perform (“is the
tree inX?”), we may have several check to perform in
parallel on a subtree (“isv1 in X1 and/or inX3?”); we
will call filter a finite set of checks to perform.

A filter is intended to be applied to any treev from a
given language; for such a tree, the filter must compute
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which of its elements containv.

Definition 3.1 Let τ be a type. Aτ -filter is a set of types
ρ such that∀t ∈ ρ. JtK ⊆ JτK.
If ρ′ ⊆ ρ, let ρ′|ρ be a type such that:

Jρ′|ρK = JτK ∩
⋂
t∈ρ′

JtK ∩
⋂

t∈ρ\ρ′

V \JtK

(such a type exists thanks to Boolean-completeness.)
The result of aτ -filter ρ for a treev ∈ JτK, writtenv/ρ, is
defined by:

v/ρ = {t ∈ ρ | v ∈ JtK}
Equivalently, we can definev/ρ as the only subsetρ′ ⊆ ρ
such thatv ∈ Jρ′|ρK.

Our construction consists in building a NUA whose
states are pairs(τ, ρ) of a typeτ and aτ -filter ρ. Note that
the set of all these pairs is finite, because we are working
with a fixed NDTA to define all the types, so there is only
a finite number of them.

3.4 Discussion

The typeτ represents the static information we have about
the tree, andρ represents the tests we want to perform on
a treev which is known to be inτ . The expected behavior
of the automaton is:

∀v ∈ JτK. A ((τ, ρ), v) = v/ρ

Moreover, the state(τ, ρ) can simply reject any tree
outsideJτK. Actually, we will build a NUA such that:

Dom((τ, ρ)) = JτK

The rest of the section describes how the NUA should
behave on a given input. It will thus mix the description
of the expected behavior of the NUA at runtime and the
(compile-time) construction we deduce from this behav-
ior.

Results In order to have a reduced NUA, we take for the
set of results of a given state(τ, ρ) only theρ′ ⊆ ρ that
can be actually obtained for an input inτ :

R((τ, ρ)) = {ρ′ ⊆ ρ | Jρ′|ρK 6= ∅}

Note thatρ′ is in this set if and only if there is av ∈ JτK
such thatv/ρ = ρ′.

Left Assume we are given a treev = (v1, v2) which
is known to be in a typeτ . What can we say aboutv1?
Trivially, it is in one of the setsJt1K for (t1, t2) ∈ ∆2(τ).
We define:

π1(τ) =
∨

(t1,t2)∈∆2(τ)

t1

It is the best information we can find aboutv1
2. Note

that: Jπ1(τ)K = {v1 | (v1, v2) ∈ JτK}.
Now assume we are given aτ -filter ρ that represents the

tests we have to perform onv. Which tests do we have to
perform onv1? It is enough to consider those tests given
by theπ1(τ)-filter:

π1(ρ) = {t1 | (t1, t2) ∈ ∆2(t), t ∈ ρ}

This set is indeed aπ1(τ)-filter. It corresponds to our
choice of performing any computation onv1 which can
potentially simplify the work we have to do later onv2.
Indeed, two different rectangles in∆2(t) for somet ∈ ρ
have different second projections because of the Canonic-
ity property.

This discussion suggests to take:

left ((τ, ρ)) = (π1(τ), π1(ρ))

Right Let us continue our discussion with the treev =
(v1, v2). The NUA performs some computation onv1

from the state(τ1, ρ1) with τ1 = π1(τ) andρ1 = π1(ρ).
Let ρ′1 be the returned result, which is the set of all the
typest1 ∈ ρ1 such thatv1 ∈ Jt1K.

What can be said aboutv2? It is in the following type:

π2(τ ; ρ′1) =
∨

(t1,t2)∈∆2(τ) | Jt1∧(ρ′
1|ρ1)K6=∅

t2

This type represents the best information we can get about
v2 knowing thatv ∈ JτK andv1 ∈ Jρ′1|ρ1K. Indeed, its
interpretation is:

{v2 | (v1, v2) ∈ JτK, ρ′1 = v1/ρ1}

Now we must compute the checks we have to perform
on v2. Let us consider a given typet ∈ ρ. If (t1, t2) ∈
∆2(t), we havet1 ∈ ρ1, so we know ifv1 ∈ Jt1K or

2Here we use the assumption that the rectangles in the decomposition
are not empty - this is part of the Canonicity property.

8



not (namely,v1 ∈ Jt1K ⇐⇒ t1 ∈ ρ′1). There is
at most one pair(t1, t2) ∈ ∆2(t) such thatv1 ∈ Jt1K.
Indeed, two rectangles in the decomposition∆2(t) have
non-intersecting first projection (Canonicity). If there is
such a pair, we must check ifv2 is in Jt2K or not, and this
will be enough to decide ifv is in JtK or not. We thus take:

π2(ρ; ρ′1) = {t2 | (t1, t2) ∈ ∆2(t), t ∈ ρ, t1 ∈ ρ′1}

The cardinal has at most as many elements asρ by the
remark above. Finally, the “right” transition is:

right ((τ, ρ), ρ′1) = (π2(τ ; ρ′1), π2(ρ; ρ′1))

Computing the result We write τ2 = π2(τ ; ρ′1) and
ρ2 = π2(ρ; ρ′1). We can run the NUA from this state
(τ2, ρ2) on the treev2, and get a resultρ′2 ⊆ ρ2 collecting
the t2 ∈ ρ2 such thatv2 ∈ Jt2K. For a typet ∈ ρ, and a
rectangle(t1, t2) in its decomposition∆2(t), we have:

v ∈ Jt1K× Jt2K ⇐⇒ (t1 ∈ ρ′1) ∧ (t2 ∈ ρ′2)

So the result of running the NUA from the state(τ, ρ) on
the treev is:

δ2((τ, ρ), ρ′1, ρ
′
2) = {t ∈ ρ |∆2(t) ∩ (ρ′1 × ρ′2) 6= ∅}

Result for atomic symbols Finally, we must consider
the case when the treev is a symbola ∈ Σ. The NUA has
only to accept for the state(τ, ρ) trees in the setJτK; so if
a 6∈ ∆0(τ), we can letδ0((τ, ρ), a) undefined. Otherwise,
we take:

δ0((τ, ρ), a) = {t ∈ ρ | a ∈ ∆0(t)}

3.5 Formal construction

We can summarize the above discussion by an abstract
construction of the NUA:

• the set of states are the pairs(τ, ρ) whereτ is a type
andρ a τ -filter;

• R((τ, ρ)) = {ρ′ ⊆ ρ | Jρ′|ρK 6= ∅};

• left ((τ, ρ)) = (π1(τ), π1(ρ)) where:
π1(τ) =

∨
{t1 | (t1, t2) ∈ ∆2(τ)} and

π1(ρ) = {t1 | (t1, t2) ∈ ∆2(t), t ∈ ρ};

• right ((τ, ρ), ρ′1) = (π2(τ ; ρ′1), π2(ρ; ρ′1)) where:
π2(τ ; ρ′1) =

∨
{t2 | (t1, t2) ∈

∆2(τ), Jt1 ∧ (ρ′1|ρ1)K 6= ∅} and
π2(ρ; ρ′1) = {t2 | (t1, t2) ∈ ∆2(t), t ∈ ρ, t1 ∈ ρ′1};

• δ2((τ, ρ), ρ′1, ρ
′
2) = {t ∈ ρ |∆2(t)∩(ρ′1×ρ′2) 6= ∅};

• δ0((τ, ρ), a) = {t ∈ ρ | a ∈ ∆0(t)} if a ∈ ∆0(τ)
(undefined otherwise)

Once again, it is out of question to actually materialize
this NUA. Indeed, we are interested only in the part acces-
sible from a given state(τ, ρ) corresponding to the pattern
matching we need to compile. This abstract presentation
has the advantage of simplicity (exactly as for the abstract
subset construction for the determinization of automata).

Remark 3.2 This construction has a nice property: the
efficiency of the constructed NUA (that is, the positions
where it will ignore subtrees of an input) does not depend
on the typeτ and the types inρ (which are syntactic ob-
jects), but only on the languages denoted by these types.
This is because of the Canonicity property. As a conse-
quence, there is no need to “optimize” the types before
running the algorithm.

3.6 Soundness

The following theorem states that the constructed NUA
computes what it is supposed to compute.

Theorem 3.3 The above construction is well defined and
explicitly computable. The resulting NUA isreducedand
it satisfies the following properties for any state(τ, ρ):

• Dom((τ, ρ)) = JτK

• ∀v ∈ JτK. A ((τ, ρ), v) = v/ρ

The proof is by induction on trees, and follows the lines
of the discussion above.

Remark 3.4 It is possible to relax the Canonicity prop-
erty for types and keep a sound compilation algorithm.
However, optimality properties (Section 3.9) crucially de-
pends on the simplifications dictated by the Canonicity
property.
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3.7 An example

In this section, we give a very simple example of a NUA
produced by our algorithm. We assume thatΣ contains at
least two symbolsa,b and possibly others. We consider a
type ta (resp. tb) which denotes all the trees with onlya
leaves (resp.b leaves). Our static informationτ0 is ta∨tb,
and the filter we are interested in isρ0 = {ta, tb}. Assum-
ing proper choices for the NDTA that defines the types,
the construction gives for the initial stateq0 = (τ0, ρ0):

• R(q0) = {{ta}, {tb}}

• left (q0) = q0

• right (q0, {ta}) = (ta, {ta})

• right (q0, {tb}) = (tb, {tb})

• δ2(q0, {ta}, {ta}) = {ta}

• δ2(q0, {tb}, {tb}) = {tb}

• δ0(q0, a) = {ta}

• δ0(q0, b) = {tb}

• δ0(q0, c) undefined ifc 6= a, c 6= b

There is no need to give the transition functions for the
statesqa = (ta, {ta}) andqb = (tb, {tb}) because they
each have a single result (R(qa) = {{ta}} andR(qb) =
{{tb}}), so the NUA will simply skip the corresponding
subtrees. Note that the NUA is tail-recursive. Its behavior
is simple to understand: it goes directly to the leftmost
leaf and returns immediatly. In particular, it traverses a
single path from the root to a leaf and ignore the rest of
the tree.

As another example, we can consider the functionsf
andg from the introduction, together with the CDuce en-
coding of XML documents. Our compilation algorithm
indeed produces equivalent automata for the two pattern
matchings: they directly fetch the root tag and ignore the
rest of the tree.

3.8 Implementation

We rely a lot on the possibility of checking emptiness of
a type (JtK = ∅). For instance, the definition ofR((τ, ρ))
requires to check a lot of types for emptyness. All the

techniques developed for the implementation of XDuce
and CDuce subtyping algorithms can be used to do it effi-
ciently. In particular, because of caching, the total cost for
all the calls to the emptiness checking procedure does not
depend on the number of calls (there is a single exponen-
tial cost), so they are “cheap” and we can afford a lot of
them. CDuce also demonstrates an efficient implementa-
tion of the “type algebra” with boolean combinations and
canonical decomposition.

The number of states(τ, ρ) is finite, but it is huge.
However, our construction proceeds in a top-down way:
starting from a given state(τ, ρ), it defines its set of results
and its transitions explicitly. Hence we are able to build
the NUA “lazily” (either by computing all the reachable
states, or by waiting to consume inputs - this is how the
CDuce implementation works).

We haven’t studied the theoretical complexity of our
algorithm, but it is clearly at least as costly as the inclusion
problem for regular tree languages. However, in practice,
the algorithm works well. It has been successfully used to
compile non-trivial CDuce programs.

Preliminary benchmarks [BCF03] suggests very good
runtime performances, and we believe that our compila-
tion strategy for pattern matching is the main reason for
that.

3.9 Optimality

Remember that one the advantages of NUAs over DTAs
is that they can ignore a whole subtree of input when the
setR(q) for the current stateq is a singleton. We would
like to have someoptimality for the NUA we have built,
to be sure that no other construction would yield a more
efficient NUA for the same problem. Due to the lack of
space, and because this part is work in progress, we keep
the presentation informal.

First, we make precise the notion of information. We
say that an information is a partial equivalence relation
(PER)≡ onV (that is, an equivalence relation whose do-
main Dom(≡) is a subset ofV ). We define an ordering
on PERs. Let≡1 and≡2 two PERs. We say that the in-
formation≡2 is larger than≡1 and we write≡1≤≡2 if
either:

• the domain of≡2 is a strict subset of the domain of
of ≡1: Dom(≡2) ( Dom(≡1)).
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• or they have the same domain, and≡2 is coarser than
≡1: v1 ≡1 v2 ⇒ v1 ≡2 v2.

Now we define the information of a stateq in a NUA
A as the PER≡q with domainDom(q) defined by:

v1 ≡q v2 ⇐⇒ A (q, v1) = A (q, v2)

Let us give the intuition about the ordering on PERs. The
idea is that the domain of a PER represents the informa-
tion we have before doing any computation (static infor-
mation), and the partition itself represents the information
we extract by doing some computation on a tree (namely,
finding the class of the PER the tree belongs to). We want
to minimize both the static information we propagate and
the amount of computation we require, so we want a NUA
to traverse states with largest possible PERs in its traversal
of a tree3.

Here we need to take the traversal order into account,
because we have made the following choice: when facing
a treev = (v1, v2), the NUA we have built in previous
sections extracts any information fromv1 that allows it to
get more precise static information onv2 (using the static
information it has onv and the result of the computation
onv1).

For an arbitrary NUAA , we have defined the result of
A on an inputv from a stateq. In this section, we need
to consider that running a NUA annotates the tree. For
each subtree, we can define a stateq such that the NUA
entered this subtree in stateq. We annotate the subtree
with the PER associated to the stateq. So we get a tree
of PERs. We can flatten it using a right-to-left traversal
(opposite to the operation of the NUA), to get a sequence
of PERs (whose length correspond to the number of nodes
and leaves in the treev). We call it the trace of(A , q) on
v.

We can compare the runs of two NUAs with initial
states(A1, q1) and(A2, q2) (provided that the domains of
the initial states containv). We say that(A1, q1) is better
than(A2, q2) for the inputv, if the trace of(A1, q1) on v
is larger than the trace of(A2, q2), for a lexicographic ex-
tension of the ordering on PERs (note that the two traces
have the same length).

3Note that a state has a trivial PER (a partition with only one class) if
and only if it has only one result (provided the NUA is reduced), which
is the case that allows the NUAs to stop the traversal.

Now let τ be a type andρ a τ -filter. Let A be an arbi-
trary NUA with an initial stateq. We assume that this state
extracts enough information from the inputs, as specified
by the filterρ. Formally, we assume the existence of a
functionσ : R2(q) → P(ρ) such that

∀v ∈ JτK. σ(A2(q, v)) = {t ∈ ρ | v ∈ JtK}

(or equivalently, that the PER associated to this stateq
is smaller than the one associated to the state(τ, ρ) in
the constructed NUA). We say that(A , q) is correct for
(τ, ρ). The optimality property can now be stated:

Claim 3.5 (Optimality) Let A be the NUA built in the
previous sections. For any treev ∈ JτK, the trace of
(A , (τ, ρ)) onv is better than the trace of any other NUA
which is correct for(τ, ρ).

The proof should follow the lines of the discussion we
used to establish the construction. However, we don’t
have a formal proof of this property yet. The intuition
is that the NUA performs as much computation on a left
subtree as necessary to get the most precise information
on the right subtree (combining static information and the
result on the left subtree) - but no more. So it is not pos-
sible, under the static knowledge at hand, to extract more
static information about the rest of the tree in the traversal
of the NUA. Having more information means having less
computation to do on the rest of the tree, hence smaller
numbers of possible results, and more opportunities for
stopping the traversal early.

However, our ordering on PERs makes it a priority to
maximize the static information, before minimizing the
amount of computation to do. This corresponds to the
choice in our algorithm to performs as much computation
on a left subtree as necessary to get the most precise infor-
mation on the right subtree (combining static information
and the result on the left subtree). This is motivated by
the fact that having more information means having less
computation to do on the rest of the tree, hence more op-
portunities for stopping the traversal early.

But it is not always true that having strictly more in-
formation allows us to do strictly less computation, and
this depends on the way the atomic cases (dispatch on the
value of the leaves) are implemented. Let us give an ex-
ample4 . Let Σ = {a, b, c} andX0 = {a} × Σ ∪ {b} ×

4In this example, we manipulate subsets ofΣ instead of types for
simplicity.
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{a, b}, X1 = {a} × {b, c} ∪ {b} × {b}. Given the static
informationX0, we want to recognizeX1. The NUA that
we have constructed will start on the left subtree with the
filter {{a}, {b}}, that is, it wants to know if the left com-
ponent ina or b (we are necessarily in one of these two
cases because ofX0). If it is a, the static information
about the right subtree isΣ, and the filter is{{b, c}}. If it
is b, the static information about the right subtree is{a, b},
and the filter is{{b}}. Note that in both cases, it is enough
to check if the right subtree is nota, so we’re not doing
less computation by distinguishing these two cases, even
if we have more precise static information for the right
subtree. It would be possible to avoid any computation on
the left subtree because the information it gives cannot be
used to improve the rest of the computation.

Note that this depends on low-level implementation
details, namely the way to implement the dispatch for
atomic symbols. It could be the case that indeed, the com-
putation in the second case above is more efficient than
the one in the first case (because of the representation of
transition tables, . . . ), thus motivating the computation on
the left subtree. This kind of situation occurs in the actual
CDuce implementation, because of complex basic types
(the analog of the symbols inΣ in this presentation): inte-
ger intervals, finite or cofinite sets of atoms, . . . A more
extensive discussion on this issue is left for a future pub-
lication.

4 Conclusion

In this paper, we have formalized the core of the compi-
lation algorithm for pattern matching as implemented in
CDuce. To simplify the presentation, we have considered
only basic trees, and a pure recognition problem (no cap-
ture variable).

The actual implementation deals with:

• The full type algebra, including records, infinite ba-
sic types, and arrow types.

• The full patern algebra, with capture variables (in-
cluding non-linear ones), default values, alternation
and disjunction patterns, . . .

We plan to report on the complete algorithm and study
the optimality property in more details in a future publi-
cation.
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