Regular tree language recognition with static information

Alain Frisch
Département d’Informatique

Ecole Normale Sugrieure, Paris, France
Alain.Frisch@ens.fr

Abstract tern matching in CDude To simplify the presentation,

the paper studies only a restricted form of pattern match-
This paper presents our compilation strategy to produce efficiéig, without capture variable and with a very simple kind
code for pattern matching in the CDuce compiler, taking in@f trees. Of course, our implementation handles capture
account static information provided by the type system. Indea@riables and the full set of types and patterns construc-
this information allows in many cases to compute the result (ti@rs in CDuce. In the simplified form, the pattern match-
is, to decide which branch to consider) by looking only ata sméilg problem is a recognition problem, namely deciding
fragment of the tree. Formally, we introduce a new kind of devhether a tree belongs to a regular tree languageor
terministic tree automata that can efficiently recognize regula®ot.

tree languages with static information about the trees and we

propose a compilation algorithm to produce these automata. 1. If the regular language is given by a tree automaton,
a top-down recognition algorithm may have to back-

track, and the recognition time is not linear in the

1 Introduction size of the input tree.

2. It is well-known that any tree automaton can be

Emergence of XML has given tree automata theory a re- transformed into an equivalent bottom-up determin-
newed importance[Nev02]. Indeed, XML schema lan- istic automaton, which ensures linear execution time;
guages such as DTD, XML-Schema, Relax-NG describe the size of the automaton may be huge even for sim-
more or less regular languages of XML documents (con- ple languages, which can make this approach unfea-
sidered as trees). Consequently, recent XML-oriented sible in practice.
typed programming languages such as XDuce [Hos00,
HP02], CDuce [BCF03, FCB02], Xtatic [GP03] have type 3- The static type system of the language provides an
algebras where types denote regular tree languages. The UPPer approximation for the type of the matched tree
type system of these languages relies on a subtyping re- v, that is some regular languagé, such thatv is
lation, defined as the inclusion of the regular languages hecessarily inXy. Taking this information into ac-
denoted by types, which is known to be a decidable prob- count, it should be possible to avoid looking at some
lem (new and efficient algorithms have been designed for Subtree ofv. However, classical bottom-up tree au-
this purpose, and they behave well in practice). tomata are bound to look at the whole tree, and they

An essential ingredient of these languages is a power- cannot take this kind of static knowledge into ac-
ful pattern matching operation. A pattern is a declarative €ount.
way to extract information from an XML tree. Because . . .
of this declarative nature, language implementors have t etus give an example to |IIustra.te the last point. Con-
propose efficient execution models for pattern matchin&.I er the following CDuce program:
This paper describes our approach in implementing pat-*CbDuce is available for download http://www.cduce.org/

type A = <a>[A*] of information from trees. More precisely, a NUA will
type B = [B*] skip a subtree if and only if looking at this tree does not

bring any additional relevant information, considering the
let f ((AIB)->Int) A >0 | B ->1 initial static information and the information already gath-
let g ((A|B)->Int) <a>_->0 | _ ->1 ered during the beginning of the run.

The first lines introduce two type& andB. They de- Remark 1.1 A central idea in XDuce-like languages is
note XML documents with onlyxa> (resp.) tags that XML document live in an untyped world and that
and nothing else. Then two functiofisandg are de- XML types are structural. This is in contrast with the
fined. Both functions take an argument which is eith&ML Schema philosophy, whose data model (after val-
a document of typé\ or of type B. They return 1 when idation) attaches typ@amesto XML nodes. Moreover,
the argument is of typA, and 0 when the argument is ofn XML Schema, the context and the tag of an element
type B. The declaration off suggests an efficient execuare enough to know the exact XML Schema type of the
tion schema: one just has to look at the root tag to ansveéement. In XDuce-like languages, in general, one may
the question. Instead, if we consider only the body pf have to look deep inside the elements to check type con-
we have to look at the whole argument, and check that etraints. Our work shows how an efficient compilation of
ery node of the argument is tagged with> (resp. with pattern matching can avoid this costly checks: our com-
); whatever technique we use - deterministic bottorpilation algorithm detects when the context and the tag
up or backtracking top-down - it will be less efficient thaare enough to decide of the type of an element without
g. looking at its content. This work supports the claim that

But if we use the information given by the function ina structural data moded la XDuce can be implemented
terface, we know that the argument is necessarily of type efficiently as a data model with explicit type namés
Aor of typeB, and we can compilé exactly as we com- XML Schema.
pile g.

This example demonstrates that taking static informRelated work Levin [Lev03] also addresses the imple-
tion into account is crucial to provide efficient executiomentation of pattern matching in XDuce-like program-
for declarative patterns asfn ming languages. He introduces a general framework (in-

The main contribution of this paper is the definitiotermediate language, matching automata) to reason about
of a new kind of deterministic bottom-up tree automatehe compilation of patterns, and he proposes several com-
called NUA (non-uniform automata) and a compilatiopilation strategies. He leaves apart the issue of using static
algorithm that produces an efficient NUA equivalent to@gpes for compilation, which is the main motivation for
given non-deterministic (classical) automaton, taking intr work. So the two works are complementary: our com-
account static knowledge about the matched trees. pilation algorithm could probably be re-casted in his for-

Informally, non-uniform automata enrich classicahalism.
bottom-up automata with a “control state”. The control Neumann and Seidl [NS98] introduce push-down au-
state is threaded through the tree, during a top-down aothata to locate efficiently nodes in an XML tree. Our
left-to-right traversal. In some cases, it is possible sutomata shares with push-down automata the idea of
stop the traversal of a whole subtree only by looking #ireading a control-state through the tree. The formalisms
the current state. Non-uniform automata combine the ate quite different because we work with simpler kind of
vantage of deterministic bottom-up and deterministic toautomata (binary trees with labeled leaves, whereas they
down tree automata, and they can take benefit from statave unranked labeled forests), and we explicitly distin-
information. guish betwen control states (threaded through the tree)

In order to discriminate several regular tree languagesid results (used in particular to update the state). How-
a NUA does not necessarily need to consider a given seler, using an encoding of unranked trees in binary trees,
tree at all. The “magic” of the compilation algorithm isve believe that the two notions of automata are isomor-
to compute a NUA that will extract only minimal set phic. But again, they don't address the issue of using

static information to improve the automata, which is olny #. There are two classical notions of deterministic
main technical contribution. It should be possible to adapee automata:

our compilation algorithm to their push-down automata
setting, but it would probably result in an extremely com-
plex technical presentation. This motivates us working
with simpler kinds of tree and automata.

e Top-down deterministic automata (TDDTA) satisfy
the property:{(ry,r2) | (r1,72,7) € d} has at most
one element for any node These automata are
strictly weaker than NDTA in terms of expressive
power (they cannot define all the regular languages).

2 Technical framework e Bottom-up deterministic automata (DTA) satisfy the

property: {r | (r1,r2,7) € ¢} has at most one ele-
ment for any pair of node@g-, r»), and similarly for
the setdr | (a,r) € §} with @ € 3. These automata
have the same expressive power as NDTA.

In this section, we introduce our technical framework. We
consider the simplest form of trees: binary trees with la-
beled leafs and unlabeled nodes. Any kind of ordered
trees (n-ary, ranked, unranked; with or without labeled
nodes) can bencoded, and the notion of regular Ianguag(i2

L iant under th di Using thi) emark 2.3 We use the non-standard terminology of
IS Invanant under these encodings. 1Jsing this very S'mq%des instead of states. The reason is that we are going to
kind of trees simplifies the presentation.

split this notion in two: results and control states. Results
will correspond to nodes in a DTA, and control states will
2.1 Trees and classical tree automata correspond to nodes in TDDTA.

Definition 2.1 Let ¥ be a (fixed) finite set of symbols. An order to motivate the use of a different kind of au-
treev is either a symbok € X or a pair of trees(vi, v2). tomata, let us introduce different notions of context. Dur-
The set of trees is writte’. ing the traversal of a tree, an automaton computes and
) athers information. The amount of extracted information
CDuce actually Uses this form of trees to represent AMian only depend on the context of the current location in
documgnts: forgetting about X_ML attributes, an XML elt'he tree. A top-down recognizer (for TDDTA) can only
ement is represented as a pditg, content) wheretag propagate information downwards: the context of a loca-
is a leaf representing the tag anghtent is the encoding tion is thus the path from the root to the location (“upward

of :jhedsequ?nac; of cgndren. The empty sequences 'Z Sgﬁtext”). A bottom-up recognizer propagates informa-
coded as a leafil, and a non-empty sequence is encodgl, | \nards: the context is the whole subtree rooted at
as a pait(head, tail). We recall the classical definition ofthe current location (“downward context’)

a tree automaton, adapted to our definition of trees. Top-down algorithms are more efficient when the rel-

Definition 2.2 (Tree automaton) A (non-deterministic) evant information is located near the root. For instance,
tree automaton (NDTAJs a pair & = (R, J) where R going back to the CDuce examples in the introduction, we

is a finite set ohodesands C (2 x R) U (R x R x R). see _easily that the functiayn should be impleme_nted by
starting the traversal from the root of the tree, since look-

Each noder in a NDTA defines a subset/[r] of ¥. ing only at the root tag is enough (note that because of
These sets can be defined by the following mutually rdte encoding of XML documents in CDuce, the root tag
cursive equations: is actually the left child of the root). Patterns in CDuce
tend to look in priority near the root of the trees instead
Ar] ={a€X|(a,r) €d}U U o [r] x < [rs] of their leafs. However, because of their lack of expres-
(r1,ra,m)ES sive power, pure TDDTA cannot be used in general. Also,
since they perform independant computations of the left
We write 7 [r]*> = &/ [r]N'¥ x ¥ . By definition, a regu- and the right children of a location in a tree, they cannot
lar language is a subset of the forsr] for some NDTA use information gathered in the left subtree to guide the
<o/ and some node. We say that this languagedefined computation in the right subtree.

The idea behind push-down automata is to traverseWhen the automaton is facing a trég, v-) in a state
each node twice. A location is first entered in a given cog;it starts with some computation @n using a new state
text, some computation is performed on the subtree, and= left (¢) computed from the current one, as for a
the location is entered again with a new context. Wherif®DTA. This gives a result; which is immediately used
location is first entered, the context is the path from tiie compute the stat@ = right (g,r1). Note that con-
root, but also all the “left siblings” of these locations anttary to TDDTA, ¢> depends not only oq, but also on the
their subtrees (we call this the “up/left context” of the locomputation performed on the left subtree. The computa-
cation). After the computation on the children, the contetibn onwv, is done from this state,, and it returns a result
also include the subtree. The notion of non-uniform aus. As for classical bottom-up deterministic automata, the
tomata we are going to introduce is a slight variation aasult for (vq, v2) is then computed from; andr, (and
this idea: a location is entered three times. Indeed, whgn
computing on a tree which is a pair, the automaton con-Let us formalize the definition of non-uniform au-
siders the left and right subtree in sequence. Between thimata. We define only the deterministic version.
two, the location is entered again to update its context, and
possibly use the information gathered on the left subtrgfinition 2.5 A non-uniform automatox/ is given by a
to guide the computation on the right subtree. finite set of stateg), and for each statg € Q:

This richer notion of context allows to combine the ad- , A finite set of result®(q).
vantages of DTA and TDDTA, and more.

Due to lack of space, we cannot give more backgrounde A stateleft (q) € Q.
information about regglar Ianggage and tree automata. 'To. For any result r, € R(eft (q)), a state
understand the technical details that follow, some famil- ight (q,71) € Q
iarity with the theory of tree automata is expected (see for ot '
instance [Nev02] for an introduction to automata theory e For any resultr; € R(left (g)), and any result
for XML and relevant bibliographical references). How- », ¢ R(right (q,71)), a result6%(q,r,72) €
ever, we give enough intuition so that the reader notfamil- - R(q).

iar with this theory can (hopefully) grasps the main ideas.))
e Apartialfunctioné®(q,) : ¥ — R(q).

2.2 Non-uniform automata The result of the automaton from a stateon an input

v € ¥, written &7 (¢, v), is the element of?(¢) defined
We now introduce a new kind of tree automata: nofy induction onv:
uniform automata (NUA in short). They can be seen as

(a generalization of) a merger between DTA and TDDTA. (g, a) = 52(% a)

Let us call “results” (resp. “control state”) the nodes of (g, (v1,v2)) = 6°(q;71,72)

DTA (resp. TDDTA). We are going to use these two no- where r= o (left (g),v1)
tions in parallel. A current “control state” is threaded and r2 = /(right = (g,71),v2)

updated during a depth-first left-to-right traversal of t L0 .
; . ecause the functiong®(q,_) are partial, so are the
tree (this control generalizes the one of TDDTA, where .
. < (q,-). We write Don{q) the set of trees such that
the state is only propagated downwards), and each 029-

trol stateq has its own set of resultB(q). Of course, the (g,v) Is defined.

transition relation is parametric i Remark 2.6 Note that this definition boils down to that

of a DTA whenQ is a singleton{q}. The set of results
Remark 2.4 We can see these automata as determing-the NUA (for the only state) corresponds to the set of
tic bottom-up automata enriched with a control state thabdes of the DTA.
makes their behavior change according to the current lo- It is also possible to convert a TDDTA to a NUA of the
cation in the tree (hence the terminology “non-uniform”)same size. The set of states of the NYA corresponds to the

set of nodes of the TDDTA, and all the states have a singlér'his condition means that any result of any state can be
result. reached for some tree in the domain of the state. Since

Our definition of NUAs (and more generally, the clashe NUA will skip a subtree if and only if the sét(q) is
of push down automata [NS98]) is flexible enough to sira-ssingleton, it is important to enforce this property.
ulate DTA and TDDTA (without explosion of size). They Of course, the set of reachable results can be computed
allow to merge the benefit of both kind of determinist{this amounts to checking emptiness of states of a NDTA,
automata, and more (neither DTA nor TDDTA can threaghich can be done in linear time), and so we can remove
information from a left subtree to the right subtree). unreachable results.

Neumann and Seidl [NS98] introduce a family of reg- The point is that we are going to present a top-down
ular languages to demonstrate that their push-down acempilation algorithm (it defines a NUA by giving ex-
tomata are exponentially more succint than determinisiidicitly for each statey the set of resultsR(¢) and the
bottom-up automata. The same kind of example appltesnsition functions, see Section 3.8). Hence the produced
for NUAs. NUA does not need to be fully built at compile time. Con-

sequently, it is meaningful to say that this construction di-

A pair (¢,r) with ¢ € Q andr € R(q) is called a rectly yields a reduced NUA, and does not require to fully

state-resultpair. For such a pair, we write7[¢;r] = materialize the automaton in order to remove unreachable
{v | &(q,v) = r} for the set of trees yielding resutt resylts.

starting from initial statg. The reader is invited to check

that a NUA can be interpreted as a non-deterministigji_recyrsion Running a NUA on a tree requires a size
tree automata whose nodes are state-result pairs. C@nsiack proportional to the height of the tree. This is
sequently, the expressive power of NUAs (that is the clggghlematic when dealing with trees obtained by a trans-
of languages of the form[g; r]) is the same as NDTAS 4ti from, say, huge XML trees to binary trees. Indeed,

(ie: they can define only regular languages). The poiffs transiation transforms long sequences to deep trees,
is that the definition of NUAs gives an efficient executlogtrong|y balanced to the right.

strategy. The following definition will help us in these cases.
Running a NUA The definition of</(¢, v) defines an Definition 2.8 A NUA istail-recursiveif, for any state
effective algorithm that operates in linear time with rel €

spect to the size af. We will only run this algorithm for Vr1 € R(left (q)).Vry € R(right (g,71)).
treesv which are knowm priori to be inDon{g). This is 82(q,m1,7m0) = 12

because of the intended use of the theory (compilation of

CDuce pattern matching): indeed, the static type system' N€ idéa is that a tail-recursive NUA can be imple-

in CDuce ensures exhaustivity of pattern matching mented with a tail-recursive call on the right subtree. The
An important remark: the flexibility of having a dif_stack—size used by a run of the NUA is then proportional to

ferent set of results for each state makes it possibletl?ft‘?r:argeSt number of “left” edges on an arbitrary branch
short-cut the inductive definition and completely ignor% the tree.)
phe theorem above shows how to turn an arbitrary

subtrees. Indeed, as soon as the algorithm reaches a sub-"- _)

treev’ in a stateg’ such thatR(¢) is a singleton, it can NUA Into a tail-recursive one.

directly returns without even looking at. Theorem 2.9 Let.<7 be an arbitrary NUA, andz”’ be the
NUA defined by:

Reduction A first criterion for a NUA to be good isthe ' — 1(4. ¢/ 0) | ¢,¢' € Q,0 : R(q) — R(¢)}

following condition: R((¢,q, 7)) = o(R(q))
initi i if: left ((¢,4',0)) = (left (q),q,!d)

Definition 2.7 A NUA ./ is reduced if: tight ((¢,4',0),71) = (right (g,71),4',0 0 8%(q,71,))

62((q7 ql70)7rlvr2) =T2

Vg € Q.Vr € R(q). Jv € Domg). </ (q,v) =7 (. ¢, 0),a) = o 0 8°(q,)

Then: 3.1 Intuitions

e o/’ is tail-recursive Let us consider four regular languag&s, X», X3, X4,
and letX = (X; x X3) U (X3 x X4). Imagine we want

e Foranytreev: &'((q,¢',0),v) = 00 (q,v) to recognize the languag®& without static information
(Xo = 7). If we are given a treé¢v,, v2), we must first

e If &7 isreduced, theny’ is also reduced. perform some computation an. Namely, it is enough

to know, after this computation, if; is in X; or not, and
When the original automaton enters the right subtree, @igilarly for X5. It is not necessary to do any other com-
set of results changes: a result returned by the compyiatation; for instance, we don’t care whetheris in X,
tion on the right subtree will have to be translated to make not. According to the presenceof in X; and/orXs,
it compatible with the set of result for the current locatiofve continue with different computations of:

The idea is to push this translation in the computation

on the right subtree. This is done by encoding the trans» It v; is neither inX; nor in X3, we already know
lation in the control state passed to the right subtree. In thatv is notinX without looking atv;. We can stop
a triple (¢, ¢’, o), the real “control-state” i ando en- the computation immediately.
codes the translation from resultsgfo result ofg’. This o _
means that if ¢, ¢, o) is the current control state of the ® If v1 is in X but not in X3, we have to check
new NUA, theng would be the control state of the origi- ~ Whetherv; is in X5.
nal NUA at the same point of the traversal, anevould

be the translation to be applied to the result by ancestors® !f 1 i in X3 but not in X, we have to check

whetherv, is in X,.

Remark 2.10 If for some statey, any R(right (¢,71))

is a singleton{c’(r1)}, it is possible to implement this
state with a tail recursive-call on the left-subtree; in the
construction above, we would takdeft (q,¢’,0) =

e If v; isin X; and inX3, we must check whethes,
is in X, or not, and inX, or not. But actually, this
is too much work, we only have to find whether it is
in X5 U X4 or not, and this can be easier to do (for

(left (g),q';000") instance, ifX, U X, = ¥, we don't have anything
to do at all).
3 The algorithm This is the general case, but in some special cases, it is not

necessary to know both wgther is in X; andwhether

Different NUA can perform the same computation witht is in X3. For instance, imagine tha&, = X,. Then
different complexities (that is, they can ignore more ave don't have to distinguish the three cases X;\ X3,
fewer subtrees of the input). To obtain efficient NUA, the; € X3\ X, v; € X; N X3. Indeed, we only need to
objective is to keep the set of resullq) as small as check whethep; is in X; U X3 or not. We could as well
possible, because whet(q) is a singleton, we can drophave merged(; x X, andX3 x X, into (X; U X3) x X»
the corresponding subtree. in this case. We can also merge them if one is a subset of

Also, we want to build NUAs that take static informathe other.
tion about the input trees into account. Hopefully, we haveNow imagine we have some static informatiafy. If
the opportunity of definingartial states, whose domainfor instance, X, N (X; x X3) = &, we can simply ig-
is not the whole set of trees. nore the rectanglé(; x X,. Also, in general, we de-

In this section, we present an algorithm to build an efluce some information about: it belongs tor; (Xy) =
ficient NUA to solve the dispatch problem under statig? | (v9,v9) € Xo}. After performing some computa-
knowledge. Namely, givem + 1 regular languagestion on vy, we get more information. For instance, we
Xo, ..., Xn, we want to compute efficiently for any treemay deduce; € X;\X3. Then we know thats is in
vin Xptheset{i =1..n | v € X;}. m(Xo N (X1\X3) x ¥). In general, we can combine the

static information and the results we get for the a left sub- pair(r{,75) # (r1,r2) suchtha(r],r5,r) € 6, then
tree to get a better static information for the right subtree. o7[r1] N &/[ri] = @ and?[ra] # </ [rs].
Propagating a more precise information allows to ignore_
more rectangles. It is well-known that the class of all regular tree lan-
The static information allows us to weaken the condd{/@ges is closed under boolean operations. The first
tion to merge two rectangle¥; x X, andX; x X,. In- Property says that the class of languages dgfined by the
deed, itis enough to check whether XN (X1 x X)) = f|xed NDTA o is closed unde_r _these operations. Start-
72(Xo N (X3 x X4)) (which is strictly weaker tha, = N9 from an arbitrary NDTA, it is possible to extend it
X). to .a Boolean-complete one. #f,r, are two nodes, we
In some cases, there are decisions to make. Imagiféi€ 71V r2 (resp.r1 A ra, —r1) for some node- such
that Xy = X; x X, U X5 x X4, and we want to checkthat #[r] = @[] U #[rs] (resp. &/[ri] N &/ [r],
if a tree (v1,v2) is in X; x X,. If we suppose that Y\ [r]).
X;NX; = @andX, N X, = @, we can work on; The Canonicity property forces a canonical way to de-
to see if is inX; or not, or we can work om, to see if COMpose the set/[r]” as a finite union of rectangles
is in X, or not. We don't need to do both, and we musif the form.«7[ri] x «/[r,]. For instance, it disallows
thus choose which one to do. We always choose to pde following situation: {(ry,r2) | (r1,72,7) € 6} =
form some computation o if it allows to gain useful {(a,c), (b, c)}. In that case, the decomposition.ef[r]*
knowledge orv. This choice allows to stop the top-dowr@iven by § would have two rectangles with the same
left-to-right traversal of the tree as soon as possible. T&cond component. To eliminate this situation, we can
choice is relevant when considering the encoding of XMRerge the two rectangles, to keep oty Vv b,c). We
sequences and trees in our binary trees. Indeed, the chalge want to avoid more complex situations, for instance
correspond to{1) extracting information from an XML Where a rectangle in the decompositionsfr]” is cov-
tag to guide the computation on the content of the eled by the union of others rectangles in this decomposi-
ment, and(2) extracting information from the first chil-tion. Itis always possible to modify the transition relation
dren before considering the following ones. o0 of a Boolean-complete NDTA to enforce the Canonic-
ity property (first, by splitting the rectangles to enforce
non-intersecting first-components, and then by merging

3.2 Types rectangles with the same second component).

We have several regular languagés X1,..., X, asin- We will use the word “type” to refer to the nodes of our

puts, and our algorithm needs to produce other languafjged NDTA «7. Indeed, they correspond closely to the

as intermediate steps. types of the CDuce (internal) type algebra, which sup-

Instead of working with several different NDTA to deport boolean operations and a canonical decomposition of
fine these languages, we assume that all the regular lpreducts. Note that the set of types is finite, here. We
guages we will consider are defined by the same fixediite [¢] instead ofe/[t], A2(t) = {(t1,t2) | (t1,t2,t) €
NDTA « (each language is defined by a specific stai¢, andA°(t) = {a | (a,t) € §}. This allows us to reuse
of this NDTA). This assumption is not restrictive since the symbolse/, r, . .. to refer to the NUA we will build,
is always possible to take the (disjoint) union of severabt the NDTA we start from.

NDTA. Moreover, we assume that this NDTA has the fol-

lowing properties: 3.3 Filters

e Boolean-completenessThe class of languages de- . . .
fined by (thatis, the languages of the formi[]), Even_ if V\ge start with a single check to perform (“is th_e
is closed under boolean operations (union, interséf:qe in.X?7), we may r‘]five. several chec.k to p,(,ar.form n
tion, complement with respect t6). pqrallel on a sgptree (“is1 in X1 and/or inX3?"); we

will call filter a finite set of checks to perform.

e Canonicity. If (ry,r,7) € 6, then: &[ri] # A filter is intended to be applied to any tregrom a

@, [ra] # @. Moreover, if we consider anothergiven language; for such a tree, the filter must compute

which of its elements contain Left Assume we are given a trae = (v1,v2) which
is known to be in a type. What can we say about ?

Definition 3.1 Letr be a type. Ar-filter is a set of types Trivially, it is in one of the setdt,] for (t1, t5) € A2(r).

p such thatvt € p. [t] C [7].

We define:
If p' C p, letp/|p be a type such that: € define o= V&
el =70 (YN () P\ (t1,t2)€A2(7)
rer! tep\p! It is the best information we can find about 2. Note

(such a type exists thanks to Boolean-completeness.) that: [(7)] = {v1 [(v1,v2) € [7]}

The result of ar-filter p for a treev € [r], writtenv/p,is ~ Now assume we are giverrdilter p that represents the

defined by: tests we have to perform an Which tests do we have to
v/p={tep|velt} perform onv,? It is enough to consider those tests given

Equivalently, we can defing/p as the only subsgt C p by ther ()-filter:
/

suchthaw € [le]. m(p) = {t1 | (11, t2) € A%(1), t € p}

Our construction consists in building a NUA whos
states are pairg-, p) of a typer and ar-filter p. Note that
the set of all these pairs is finite, because we are work
with a fixed NDTA to define all the types, so there is onl
a finite number of them.

%his set is indeed & (7)-filter. It corresponds to our

" oice of performing any computation en which can
tentially simplify the work we have to do later an.

ndeed, two different rectangles ih?(¢) for somet € p

have different second projections because of the Canonic-

. . ity property.
3.4 Discussion This discussion suggests to take:
The typer represents the static information we have about
the tree, ang represents the tests we want to perform on left (7, p)) = (m(7), m1(p))
a treev which is known to be irr. The expected behavior
of the automaton is: Right Let us continue our discussion with the tree-
(v1,v2). The NUA performs some computation an
Vv e [r]. Z((1,p),v) =v/p from the statgr, p1) with 7, = 7 (7) andp; = 71 (p).

Let p} be the returned result, which is the set of all the
typest; € p; such that € [t].
What can be said about? It is in the following type:

Moreover, the statér, p) can simply reject any tree
outside[7]. Actually, we will build a NUA such that:

Doni(7, p)) = [7] /
The rest of the section describes how the NUA should ma(T3 p1) = . \/ /
behave on a given input. It will thus mix the description (t1,2)€A%(0) | [o] 22

of the expected behavior of the NUA at runtime and thgjs type represents the best information we can get about
(compile-time) construction we deduce from this behay; nowing thatv € [7] andv, € [p)|p1]. Indeed, its

ior. interpretation is:

to

Results In order to have a reduced NUA, we take for the {va | (v1,v2) € [7], P} = v1/p1}
set of results of a given state, p) only thep’ C p that
can be actually obtained for an inputin Now we must compute the checks we have to perform
. . onwy. Let us consider a given typee p. If (t1,t2) €
R((r,p)) ={p" S p|r'lp] # 2} A2(t), we havet; € p;, so we know ifv; € [t1] or
Note thatp’ is in this set if and only if there isa € [7] 2Here we use the assumption that the rectangles in the decomposition
such that/p = p'. are not empty - this is part of the Canonicity property.

not (namely,v; € [t1] <= t; € p)). Thereis e right ((7,p),p}) = (m2(7;p}), m2(p; p})) where:
at most one paift;,tz) € AZ%(t) such thatv; € [t]. 7o (73) = Vita | (t1,t2) €
Indeed, two rectangles in the decompositidf(t) have AZ(7), [t1 A (py|p1)] # @} and

non-intersecting first projection (Canonicity). If there is m(p; p}) = {t2 | (t1,t2) € A%(t),t € p,t1 € p} };

such a pair, we must checkadf is in [t2] or not, and this

will be enough to decide if is in [¢] or not. We thus take: ® 9°((7, p), p1, p3) = {t € p| A*()N(p} x) # D};

ma(p1 p) = {ta | (t1,t2) € A2(t),t € p,ty € pl} o °((r,p),a) ={t € pla € A°t)}if a € A%(r)
(undefined otherwise)

The cardinal has at most as many elementp ay the

remark above. Finally, the “right” transition is: Once again, it is out of question to actually materialize
this NUA. Indeed, we are interested only in the part acces-
right ((1,p), p}) = (m2(7; 01), m2(p; p})) sible from a given statér, p) corresponding to the pattern

matching we need to compile. This abstract presentation

Computing the result We write 7o = mo(7; p}) and has the advantage of simplicity (exactly as for the abstract
ps = ma(p:p,). We can run the NUA from this stateSubset construction for the determinization of automata).

(72, p2) on the treesy, and get a resul, C ps collecting
thets € py such that, € [to]. For atypet € p, and a
rectanglg(ty, t2) in its decompositiom!\?(¢), we have:

Remark 3.2 This construction has a nice property: the
efficiency of the constructed NUA (that is, the positions
where it will ignore subtrees of an input) does not depend
on the typer and the types im (which are syntactic ob-
jects), but only on the languages denoted by these types.
So the result of running the NUA from the stdte p) on This is because of the Canonicity property. As a conse-
the treev is: guence, there is no need to “optimize” the types before
running the algorithm.

vE [t x [t2] <= (tr € p1) A (t2 € p3)

32 ((1,p), P, P2) = {t € p | A(t) N (py x p3) # B}
. _ .. 3.6 Soundness
Result for atomic symbols Finally, we must consider
the case when the treds a symbok € ¥. The NUA has The following theorem states that the constructed NUA
only to accept for the staie, p) trees in the sefr]); so if computes what it is supposed to compute.
a ¢ A°(7), we canlet®((r, p), a) undefined. Otherwise,

we take: Theorem 3.3 The above construction is well defined and
o 0 explicitly computable. The resulting NUAnsducedand
§°((r,p),a) ={t € plae A°(t)} it satisfies the following properties for any stdte p):
3.5 Formal construction e Doni(r,p)) = 7]

We can summarize the above discussion by an abstract Yv € [7]. &/ ((7,p),v) =v/p

construction of the NUA:
The proof is by induction on trees, and follows the lines

e the set of states are the pafrs p) wherer is a type of the discussion above.
andp a r-filter;
Remark 3.4 It is possible to relax the Canonicity prop-

— / / .
 B((r.p)) ={p" S P[] # 2}; erty for types and keep a sound compilation algorithm.
o left ((r,p)) = (m(7),m(p)) where: However, optimality properties (Section 3.9) crucially de-
mi(7) = \/{t1 | (t1,t2) € A%(7)} and pends on the simplifications dictated by the Canonicity
m(p) = {t1 | (f1,t2) € A2(1), t € p}; property.

3.7 Anexample techniques developed for the implementation of XDuce
nd CDuce subtyping algorithms can be used to do it effi-

;) ciently. In particular, because of caching, the total cost for
produced by our algorithm. We assume thatontains at all the calls to the emptiness checking procedure does not

least two symbola,b_ and possibly others. We c_on3|der %epend on the number of calls (there is a single exponen-
typet, (resp.,) which denotes all the trees with ony tial cost), so they are “cheap” and we can afford a lot of

leaves (respb leaves). Our static information is ta Vs, them. CDuce also demonstrates an efficient implementa-

ffjmd the filter we are interested indg = {ta, t.b}' Assum- tion of the “type algebra” with boolean combinations and
ing proper choices for the NDTA that defines the typeg, ..o decomposition

the construction gives for the initial staje = (7o, po): The number of stateér, p) is finite, but it is huge.

In this section, we give a very simple example of a NU

o R(qo) = {{ta}, {ts}} How_ever, our anstruction prqceec_is in_a top-down way:
starting from a given state, p), it defines its set of results
e left (q0) =qo and its transitions explicitly. Hence we are able to build
. _ the NUA “lazily” (either by computing all the reachable
o fight (g0, {ta}) = (ta, {ta}) states, or by waiting to consume inputs - this is how the
e right (qo, {ts}) = (ts, {ts}) CDuce implementgtion works). . .
) We haven't studied the theoretical complexity of our
e 0%(qo, {ta}, {ta}) = {ta} algorithm, but it is clearly at least as costly as the inclusion
52 " oY) = (¢ problem for regular tree languages. However, in practice,
* %0, {tohs {to}) = {to} the algorithm works well. It has been successfully used to
e §%qo,a) = {ta} compile non-trivial CDuce programs.
0 Preliminary benchmarks [BCFO03] suggests very good
* 0°(q0,0) = {tv} runtime performances, and we believe that our compila-
o 3°(qo, c) undefined ife # a,c # b :lr?nt strategy for pattern matching is the main reason for
at.

There is no need to give the transition functions for the
statesq, = (tq,{ta}) andgq, = (t, {t}) because they . .
each have aEsin{gIe}zesuR(qa) :({{{ta}}}) andR(q) = 3.9 Optimality
{{tv}}), so the NUA will simply skip the correspondingremember that one the advantages of NUAs over DTAs
subtrees. Note that the NUA is tail-recursive. Its behavigythat they can ignore a whole subtree of input when the
is simple to understand: it goes directly to the leftmoskt r(q) for the current statg is a singleton. We would
leaf and returns immediatly. In particular, it traverses|ige to have som@ptimality for the NUA we have built,
single path from the root to a leaf and ignore the rest &f be sure that no other construction would yield a more
the tree. efficient NUA for the same problem. Due to the lack of
As another example, we can consider the functibnsspace, and because this part is work in progress, we keep
andg from the introduction, together with the CDuce enhe presentation informal.
coding of XML documents. Our compilation algorithm First, we make precise the notion of information. We
indeed produces equivalent automata for the two pattegy that an information is a partial equivalence relation
matchings: they directly fetch the root tag and ignore theER)= on ¥ (that is, an equivalence relation whose do-

rest of the tree. main Don{=) is a subset of¢'). We define an ordering
on PERs. Lets; and=, two PERs. We say that the in-

3.8 Implementation formation=; is larger than=; and we write=; <=, if
either:

We rely a lot on the possibility of checking emptiness of
atype (¢] = ©). For instance, the definition @t ((r, p)) ¢ the domain of=, is a strict subset of the domain of
requires to check a lot of types for emptyness. All the of =;: Dom=,) C Don{=,)).

10

e or they have the same domain, anglis coarserthan Now let r be a type ang a r-filter. Let <7 be an arbi-
=11 U] =1 Vg = U] =2 Vs, trary NUA with an initial statey. We assume that this state
extracts enough information from the inputs, as specified
Now we define the information of a stagein a NUA py the filter p. Formally, we assume the existence of a
</ as the PER=, with domainDon{g) defined by: functiono : Ry(q) — 2(p) such that

v =4 V2 = H(q,01) = A (q,v2) Vo € [7]. o(#(q,v)) ={t € p|v € [t}

Ve the intuiti b he orderi or equivalently, that the PER associated to this state
Let us give the intuition about the ordering on PERs. Ti smaller than the one associated to the statg) in

idea is that the domain of a PER represents the inforrqﬁé constructed NUA). We say thét/, q) is correct for
tion we have before doing any computation (static infoy- ' '

. AR) (T, p). The optimality property can now be stated:
mation), and the partition itself represents the information
we extract by doing some computation on a tree (namehjaim 3.5 (Optimality) Let </ be the NUA built in the
finding the class of the PER the tree belongs to). We wal{gVvious sections. For any tree € [r], the trace of
to minimize both the static information we propagate ad”» (7, p)) onv is better than the trace of any other NUA

the amount of computation we require, so we want a NUghich is correct for(r, p).

to traverse states with largest possible PERs inits traversajhe proof should follow the lines of the discussion we
of atreé. used to establish the construction. However, we don’t
Here we need to take the traversal order into accounive a formal proof of this property yet. The intuition
because we have made the following choice: when facigghat the NUA performs as much computation on a left
atreev = (v1,vz), the NUA we have built in previous subtree as necessary to get the most precise information
sections extracts any information framthat allows it to on the right subtree (combining static information and the
get more precise static information o (using the static result on the left subtree) - but no more. So it is not pos-
information it has orv and the result of the computatiorsible, under the static knowledge at hand, to extract more
onwy). static information about the rest of the tree in the traversal
For an arbitrary NUA<7, we have defined the result ofof the NUA. Having more information means having less
&/ on an inputv from a statey. In this section, we needcomputation to do on the rest of the tree, hence smaller
to consider that running a NUA annotates the tree. Faimbers of possible results, and more opportunities for
each subtree, we can define a stasuch that the NUA stopping the traversal early.
entered this subtree in staje We annotate the subtree However, our ordering on PERs makes it a priority to
with the PER associated to the stgteSo we get a tree maximize the static information, before minimizing the
of PERs. We can flatten it using a right-to-left traversaimount of computation to do. This corresponds to the
(opposite to the operation of the NUA), to get a sequenggoice in our algorithm to performs as much computation
of PERs (whose length correspond to the number of nodgsa left subtree as necessary to get the most precise infor-
and leaves in the treg). We call it the trace of.<7, ¢) on mation on the right subtree (combining static information
. and the result on the left subtree). This is motivated by
We can compare the runs of two NUAs with initiathe fact that having more information means having less
stateq .2/, ¢1) and(<#s, ¢2) (provided that the domains ofcomputation to do on the rest of the tree, hence more op-
the initial states contain). We say that.<7, ¢;) is better portunities for stopping the traversal early.
than (e, q2) for the inputw, if the trace of(«#,¢;) onv But it is not always true that having strictly more in-
is larger than the trace £+, ¢2), for a lexicographic ex- formation allows us to do strictly less computation, and
tension of the ordering on PERs (note that the two trad@#s depends on the way the atomic cases (dispatch on the
have the same length). value of the leaves) are implemented. Let us give an ex-

N o ample* . LetY = {a,b,c} and Xy = {a} x L U {b} x

SNote that a state has a trivial PER (a partition with only one class) if
and only if it has only one result (provided the NUA is reduced), which “In this example, we manipulate subsetsSbinstead of types for
is the case that allows the NUAs to stop the traversal. simplicity.

11

{a,b}, X1 = {a} x {b,c} U {b} x {b}. Given the static ACKnowledgments

information X, we want to recogniz&(;. The NUA that

we have constructed will start on the left subtree with thavould like to express my best gratitude to Haruo Hosoya
filter {{a}, {b}}, that is, it wants to know if the left com-for his his help in improving the presentation of this paper.
ponent ina or b (we are necessarily in one of these two

cases because dfy). If it is a, the static information

about the right subtree 15, and the filter is{{b, ¢} }. If it References

is b, the static information about the right subtre¢dsb}, BcFo3] Veronique Benzaken, Giuseppe Castagna, and Alain

and the filter is{{b} }. Note that in both cases, itis enoug Frisch. CDuce: an XML-centric general-purpose lan-
to check if the right subtree is nat so we're not doing guage. INCFP, 2003.

less computation by distinguishing these two cases, ©YEBR02] Alain Frisch, Giuseppe Castagna, an@rdhique

if we have more precise static information for the right Benzaken. Semantic subtyping. LICS, 2002.
subtree. It would be possible to avoid any computation

. R 03] Vladimir Gapeyev and Benjamin Pierce. Regular ob-
the left subtree because the information it gives cannot'te ject types. IFFOOL, 2003.

used to improve the rest of the computation.)

Note that this depends on low-level implementatidhl0s00] Haruo Hosoya. Regular expression types for XML.
details, namely the way to implement the dispatch for Ph.D thesis. The University of Toky2000.
atomic symbols. It could be the case that indeed, the cdifP02] Haruo Hosoya and Benjamin Pierce. Regular expres-
putation in the second case above is more efficient than sion pattern matching for XML. Journal of Func-
the one in the first case (because of the representation of ~ tional Programming 2002.
transition tables, . ..), thus motivating the computation ¢ev03] Michael Levin. Compiling regular patterns. IGFP,

the left subtree. This kind of situation occurs in the actual 2003.
CDuce implementation, because of complex basic tygesvo2] Frank Neven. Automata theory for XML researchers.
(the analog of the symbols 1 in this presentation): inte- In SIGMOD Record, 31(3), 2002002.
ger intervals, finite or cofinite sets of atoms, ... A mor@sgg] Andreas Neumann and Helmut Seidl. Lo-
extensive discussion on this issue is left for a future pub- Cating matches of tree patterns in forests.
lication. In Foundations of Software Technology and
Theoretical Computer Science pages 134—

) 145, 1998. Extended abstract available at

4 Conclusion http://www.informatik.uni-trier.

de/"seidl/conferences.html
In this paper, we have formalized the core of the compi-
lation algorithm for pattern matching as implemented in
CDuce. To simplify the presentation, we have considered
only basic trees, and a pure recognition problem (no cap-
ture variable).
The actual implementation deals with:

e The full type algebra, including records, infinite ba-
sic types, and arrow types.

e The full patern algebra, with capture variables (in-
cluding non-linear ones), default values, alternation
and disjunction patterns, ...

We plan to report on the complete algorithm and study
the optimality property in more details in a future publi-
cation.

12

