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2 · Alain Frish et al.may be a hard task. A solution to this problem was given by Haruo Hosoya andBenjamin Piere [Hosoya and Piere 2001; Hosoya 2001; Hosoya and Piere. 2003℄with the work on XDue. The key idea is that in order to de�ne the subtyping rela-tion semantially one does not need to start from a model of the whole language: amodel of the types su�es. In partiular Hosoya and Piere take as their model oftypes the set of values of the language. Their notion of model annot apture fun-tional values (their sets of values are regular languages whih, as it is well known,are not losed with respet to funtional spaes). On the one hand, the resultingtype system is poor sine it laks funtion types. On the other hand, it manages tointegrate union, produt and reursive types and still keep the presentation of thesubtyping relation and of the whole type system quite simple.In a previous work [Frish et al. 2002; Frish 2004℄ we extended the work onXDue and re-framed it in a more general setting: we showed a tehnique to de�nesemanti subtyping in the presene of a rih type system inluding funtion types,but also arbitrary Boolean ombinations (union, intersetion, and negation types)and in the presene of lately bound overloaded funtions and type-based patternmathing. The aim of [Frish et al. 2002; Frish 2004℄ was to provide a theoretialfoundation on the top of whih to build the language CDue [Benzaken et al. 2003℄,an XML-oriented transformation language. The key theoretial ontribution of thework is a new approah to de�ne semanti subtyping when straightforward set-theoreti interpretation does not work, in partiular for arrow types. Here we fousand expand on this aspet of the work and we get rid of many features (e.g. patternmathing and pattern variable type inferene) whih are not diretly related to thetreatment of subtyping.The desription of a general tehnique to extend semanti subtyping to generaltypes systems with arrow and omplete Boolean ombinator types is just one wayto read our work, and it is the one we deided to emphasise in this presentation.However it is worth mentioning that there exist at least two other readings for theresults and tehniques presented here.A �rst alternative reading is to onsider this work as a researh on the de�nition ofa general purpose higher-order XML transformation language: indeed, this was theinitial motivation of [Frish et al. 2002; Frish 2004℄ and the theoretial work donethere onstitutes the fundamental basis for the de�nition and the implementationof the XML transformation language CDue.A seond way of understanding this work is as a quest for the generalisation oflately bound overloaded funtions to intersetion types. The intuition that over-loaded funtions should be typed by intersetion types was always felt but neverfully formalised or understood. On the one hand we had the longstanding researhon intersetion types with the seminal works by the Turin researh group on Curry-style typed lambda alulus [Barendregt et al. 1983; Coppo and Dezani-Cianaglini1980℄ (and later pursued in Churh-style by John Reynolds' work on oherent over-loading and the language Forsythe [Reynolds 1991; 1996℄). However funtions withintersetion types had a uniform behaviour, in the sense that even if they workedon arguments of di�erent types they always exeuted the same ode for all of thesetypes. So funtions with intersetion types looked loser to �nitely parametri (inthe sense of Reynolds [Reynolds 1983℄) polymorphi funtions (in whih we enu-Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 3merate the possible input types) that annot reonstrut values of the (intuitive)�nite range parametri type1, rather than overloaded funtions whih are able todisriminate on the type of the argument, exeute a di�erent ode for eah di�erenttype and, as suh, (re-)onstrut values of the type at issue. On the other handthere was the researh on overloaded funtions as used in programming languageswhih aounted for funtions formed by di�erent piees of ode seleted aordingto the type of the argument the funtion is applied to. However, even if the typesof these funtions are apparently lose to intersetion types, they never had the set-theoreti intuition of intersetions. So for example in the λ&-alulus [Castagnaet al. 1995℄ overloaded funtions have types that are haraterised by the same sub-typing relation as intersetion types, but they di�er from the latter by the need ofspeial formation rules that have no reasonable ounterpart in intersetion types.The overloaded funtions de�ned here and, even more, those de�ned in [Frishet al. 2002℄ �nally reonile the two approahes: they are typed by intersetiontypes (with a lassial/set-theoreti interpretation) and their de�nitions may in-termingle ode shared by all possible input types (parametri ode) with piees ofode that are spei� to only some partiular input types (ad ho ode). Thereforethey niely integrate both programming styles.Finally it is important to stress that although here we deploy our onstrutionfor a λ-alulus with higher-order funtions, the tehnique is quite general and anbe used mostly unhanged for quite di�erent paradigms, as for instane it is donein [Castagna et al. 2005; Castagna et al. 2007℄ for the π-alulus.Plan of the artile.. The presentation is strutured in four parts:(1) In the �rst part (Setion 2) we lengthy disuss the main ideas, the underlyingintuitions, and the logial entailment of the whole approah.(2) In the seond part (Setions 3�5) we suintly and preisely de�ne the sys-tem: the alulus and its typing relation (Setion 3), the subtyping relation(Setion 4), and their properties (Setion 5).(3) The third part (Setion 6) presents the tehnial details of the properties statedin the seond part. It an be skipped in the �rst reading.(4) The last part (Setions 7�9) explains those intuitions and details that ouldnot be given in the �rst part sine their explanation required the tehnialdevelopment (Setion 7), it disusses related work (Setion 8), and hints toother work based on the material presented here together with some resultsthat on�rm the robustness of our approah (Setion 9).2. OVERVIEW OF THE APPROACHWhen dealing with syntati subtyping one usually proeeds as follows. First, onede�nes a language, then, somewhat independently, the set of (syntati) types and asubtyping relation on this set. This relation is de�ned axiomatially, in an indutive(or o-indutive, in ase of reursive types) way. The type system, onsisting of
1As a universally quanti�ed seond order type an be interpreted as a mapping from types to types,so a �nite intersetion of arrow types an be seen as point-wise de�nition of a �nite mapping fromtypes to types. This is just an intuitive analogy: this partiular use of intersetion types evokesthe perfume of parametriity but must not be taken stritu senso.Journal of the ACM, Vol. V, No. N, Month 20YY.



4 · Alain Frish et al.the set of types and of the subtyping relation, is oupled to the language by atyping relation, usually de�ned via some typing rules by indution on the termsof the language and possibly a subsumption rule that aounts for subtyping. Themeaning of types is only given by the rules de�ning the subtyping and the typingrelations.The semanti subtyping approah desribed here diverges from the above onlyfor the de�nition of the subtyping relation. Instead of using a set of dedution rules,this relation is de�ned semantially: we do it by de�ning a set-theoreti model ofthe types and by stating that one type is subtype of another if the interpretation ofthe former is a subset of the interpretation of the latter. As for syntati subtyping,the de�nition is parametri in the set of base types and their subtyping relation (inour ase, their interpretation).2.1 A �ve steps reipeIn priniple, the proess of de�ning semanti subtyping an be roughly summarisedin the following �ve steps:(1) Take a bunh of type onstrutors (e.g., →, ×, h , . . . ) and extend the typealgebra with the following Boolean ombinators : union ∨∨∨, intersetion ∧∧∧, andnegation ¬¬¬, yielding a type algebra T .(2) Give a set-theoreti model of the type algebra, namely de�ne a funtion J KD :
T → P(D), for some domain D (where P(D) denotes the power-set of D). Insuh a model, the ombinators must be interpreted in a set-theoreti way (thatis, Js∧∧∧tKD = JsKD ∩ JtKD, Js∨∨∨tKD = JsKD ∪ JtKD, and J¬¬¬tKD = D \ JtKD), andthe de�nition of the model must apture the essene of the type onstrutors.There might be several models, and eah of them indues a spei� subtypingrelation on the type algebra. We only need to prove that there exists at leastone model and then pik one that we all the bootstrap model . If its assoiatedinterpretation funtion is J K

B
, then it indues the following subtyping relation:

s ≤B t
def
⇐⇒ JsK

B
⊆ JtK

B
(1)(3) Now that we de�ned a subtyping relation for our types, �nd a subtyping algo-rithm that deides (or semi-deides) the relation. This step is not mandatorybut highly advisable if we want to use our types in pratie.(4) Now that we have a (hopefully) suitable subtyping relation available, we anfous on the language itself, onsider its typing rules, use the new subtypingrelation to type the terms of the language, and dedue Γ ⊢B e : t. In partiularthis means to use in the subsumption rule the bootstrap subtyping relation ≤Bwe de�ned in step 2.(5) The typing judgement for the language now allows us to de�ne a new natu-ral set-theoreti interpretation of types, the one based on values JtK

V
= {v ∈

V | ⊢B v : t}, and then de�ne a �new� subtyping relation as we did in (1),namely s ≤V t
def
⇔ JsK

V
⊆ JtK

V
. The new relation ≤V might be di�erent from

≤B we started from. However, if the de�nitions of the model, of the language,and of the typing rules have been arefully hosen, then the two subtyping re-lations oinideJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 5
s ≤B t ⇐⇒ s ≤V tand this loses the irularity. Of ourse, this does not imply that the de�ni-tions are �valid� in any formal sense, only that they are mutually oherent. Westill need to hek type soundness. In this paper, we do this with standardsyntatial tehniques (subjet redution and progress).While the �ve steps above outline a nie framework in whih to �t and understandwhat follows, in pratie, however, the starting point never is the model of types butthe alulus: in partiular one always starts from the alulus and its values, andtries to slightly modify these so that the values outline some model that an thenbe formalised. This is what we also do here: while we follow the �ve-steps proessabove to give, in the rest of this setion, an overview of the approah, in Setion 3 weintrodue a λ-alulus with overloaded funtions and dynami dispath, in Setion 4we introdue a model to semantially de�ne a subtyping relation inspired from theprevious alulus, and in Setion 5 disuss the main results, namely, the soundnessof the typing relation, the orrespondene between the values of Setion 3 and themodel of Setion 4, and the deidability of the various relations.2.2 Advantages of semanti subtypingThe semanti approah is more tehnial and onstraining, and this may explainwhy it has obtained less attention than syntati subtyping. However it presentsseveral advantages:(1) When type onstrutors have a natural interpretation in the model, the subtyp-ing relation is by de�nition omplete with respet to its intuitive interpretationas set inlusion: when t ≤ s does not hold, it is possible to exhibit an elementof the model whih is in the interpretation of t and not of s, even in pres-ene of arrow types (this property is used in CDue to return informative errormessages to the programmer); in the syntati approah one an just say thatthe formal system does not prove t ≤ s, and there may be no lear riterionto assert that some meaningful additional rules would not allow the systemto prove it. This argument is partiularly important with a rih type alge-bra, where type onstrutors interat in non trivial ways; for instane, whenonsidering arrow, intersetion and union types, one must take into aount�i.e., introdue rules for� many distributivity relations suh as, for instane2,

(t1 ∨ t2) → s ≃ (t1 → s) ∧ (t2 → s). Forgetting any of these rules yields a typesystem that, although sound, does not math (that is, it is not omplete withrespet to) the intuitive semantis of types.(2) In the syntati approah deriving a subtyping algorithm requires a strongintuition of the relation de�ned by the formal system, while in the semantiapproah it is a simple matter of �arithmeti�: it simply su�es to use theinterpretation of types and well-know Boolean algebra laws to deompose sub-typing on simpler types (as we show in Setion 6.2). Furthermore, as mostof the formal e�ort is done with the semanti de�nition of subtyping, studyingvariations of the algorithm (e.g., optimisations or di�erent rules) turns out to be
2We write s ≃ t as a shorthand for s ≤ t and s ≥ t.Journal of the ACM, Vol. V, No. N, Month 20YY.



6 · Alain Frish et al.muh simpler (this is ommon pratie in database theory where, for example,optimisations are derived diretly from the algebrai model of data).(3) While the syntati approah requires tedious and error-prone proofs of formalproperties, in the semanti approah many of them ome for free: for instane,the transitivity of the subtyping relation is trivial (as set-ontainment is tran-sitive), and this makes proofs suh as ut elimination or transitivity admissi-bility pointless. Other examples of properties that ome easily from a semantide�nition are the variane of type onstrutors, and distributivity laws (e.g.
t1×××(t2∨∨∨t3) ≃ (t1×××t2)∨∨∨(t1×××t3)).Although these properties look quite appealing, the tehnial details of the approahhinder its development: in the semanti approah, one must be very areful notto introdue any irularity in the de�nitions. For instane, if the type systemdepends on the subtyping relation�as this is generally the ase�one annot use itto de�ne the semanti interpretation whih must thus be given independently fromthe typing relation; also, usually the model orresponds to an untyped denotationalsemantis, where types are interpreted by strutures in whih negative types eitherdo not have an immediate interpretation (for instane, the omplement of ideals isnot an ideal, therefore one should onsider to mix ideals with o-ideals), or simplyare never onsidered (one of the JACM reviewers suggests that this may be for�ideologial reasons oming from proof theory and intuitionism� rather than fortehnial problems). For these reasons all the semanti approahes to subtypingprevious to our work presented some limitations: no higher-order funtions, noomplement types, and so on. The main ontribution of our work is the developmentof a formal framework that overomes these limitations.Exursus. The reader should not onfuse our researh with the long-standing researh on set-theoreti models of subtyping. In that aseone starts from a syntatially (i.e. axiomatially) de�ned subtypingrelation and seeks a set-theoreti model where this relation is interpretedas inlusion. Our approah is the opposite: instead of starting from asubtyping relation to arrive to a model, we start by de�ning a model inorder to arrive at a subtyping relation (and eventually verify that thisrelation is onsistent with our language). Thus in our approah typeshave a strong substane even before introduing the typing relation.2.3 A model of typesTo de�ne semanti subtyping we need a set-theoreti model of types. The soureof most of (if not all) the problems omes from the fat that this model is usuallyde�ned by starting from a model of the terms of the language. That is, we on-sider a denotational interpretation funtion that maps eah term of the languageinto an element of a semanti domain and we use this interpretation to de�ne theinterpretation of the types (typially�but not neessary, e.g. PER models [Aspertiand Longo 1991℄�as the image of the interpretation of all terms of a given type).If we onsider funtional types then in order to interpret funtional term appli-ation we have to interpret the duality of funtions as terms and as funtions onterms. This yields the need to solve ompliated reursive domain equations thatJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 7hardly ombines with a set-theoreti interpretation of types, whene the introdu-tion of restritions in the de�nition of semanti subtyping (e.g. no funtion types,no negation types, et . . . ).Note however that in order to de�ne semanti subtyping all we need is a set-theoreti model of types . The onstrution works even if we do not have a modelof terms. To push it to the extreme, in order to de�ne subtyping we do not needterms at all, sine we ould imagine to de�ne type inlusion for types independentlyfrom the language we want to use these types for. More plainly, the de�nition of asemanti subtyping relation needs neither an interpretation for appliations (thatis an appliative model) nor, thus, the solution of ompliated domain equations.The key idea to generalise semanti subtyping is then to dissoiate the model oftypes from the model of terms and de�ne the former independently from the latter.In other words, the interpretation of types must not foredly be based on, or relatedto an interpretation of terms (and atually in the same onrete examples we willgive we interpret types in strutures that annot be used for an interpretation ofterms), and as a matter of fat we do not need an interpretation of terms even toexist for the semanti subtyping onstrution to go through3.2.4 Types as sets of valuesNevertheless, to ensure type safety (i.e. well-typed programs annot go wrong) themeaning of types has to be somewhat orrelated with the language. A lassialsolution, that belongs to the types folklore4 is to interpret types as sets of values ,that is, as the results of well-typed omputations in the language. More formally,the values of a typed language are all the terms that are well-typed, losed, and inweak head-normal form. So the idea is that in order to provide an interpretationof types we do not need an interpretation of all terms of the language (or of justthe well-typed ones): the interpretation of the values of the language su�es tode�ne an interpretation of types. This is muh an easier task: sine a losedappliation usually denotes a redex, then by restriting to the sole values we avoidthe need to interpret appliation and, therefore, also the need to solve ompliateddomain equations. This is the solution adopted by XDue, where values are XMLdouments and types are sets of douments (more preisely, regular languages ofdouments).But if we onsider a language with arrow types, that is a language with higherorder funtions, then the appliations ome bak again: arrow types must be in-terpreted as sets of funtion values, that is, as sets of well-typed losed lambdaabstrations, and appliations may our in the body of these abstrations. Hereis where XDue stops and it is the reason why it does not inlude arrow types.
3As Pierre-Louis Curien suggested, the onstrution we propose is a pied de nez to (it oks asnook at) denotational semantis, as it uses a semanti onstrution to de�ne a language for whih,possibly, no denotational semantis is known.
4A survey on the �Types� mailing list traes this solution bak to Bertrand Russell and AlfredWhitehead's Prinipia Mathematia. Closer to our interests it seems that the idea independentlyappeared in the late sixties early seventies and later bak again in seminal works by Roger Hindley,Per Martin-Löf, Ed Lowry, John Reynolds, Niklaus Wirth and probably others (many thanks tothe many �typers� who answered to our survey). Journal of the ACM, Vol. V, No. N, Month 20YY.



8 · Alain Frish et al.2.5 A irularity to breakIntroduing arrow types is then problemati beause it slips appliations bak againin the interpretation of types. However this does not mean that we need a semantiinterpretation for appliation, it just implies that we must de�ne how appliation istyped . Indeed, funtional values are well-typed lambda abstrations, so to interpretfuntional types we must be able to type lambda abstrations and in partiular totype the appliations that our in their body. Now this is not an easy task in ourontext: in the absene of higher order funtions the set of values inhabiting typeonstrutors suh as produts or reords an be indutively de�ned from basi typeswithout resorting to any typing relation (this is why the XDue approah workssmoothly). With the arrow type onstrutor, instead, this an be done only by usinga typing relation, and this yields to the irularity we hinted at in the introdutionand that is shown in Figure 1: in order to de�ne the subtyping relation we needan interpretation of the types of the language; for this we have to de�ne whihare the values of an arrow type; this needs that we de�ne the typing relation forappliations, whih in turns needs the de�nition of the subtyping relation.
Typing
relationvalues

Well−typed

Subtyping
relation

Fig. 1. Cirularity
Thus, if we want to de�ne the semanti subtyping of ar-row types we must �nd a way the avoid this irularity.The simplest way to avoid it is to break it, and the de-velopment we did so far learly suggests where to do so.We always said that to de�ne (semanti) subtyping wemust have a model of types; it is also lear that the typ-ing relation must use subtyping; but, on the ontrary,it is not stritly neessary for our model to be based onthe interpretation of values, this is just onvenient as itties the types with the language the types are intendedfor. This is therefore the weakest link and we an breakit. So the idea is to start from a model (of the types)de�ned independently (but not too muh) from the lan-guage the types are intended for (and therefore independently from its values), andthen from that de�ne the rest: subtyping, typing, set of values. We will then showhow to relate the initial model to the obtained language and reover the initial�types as set of values� interpretation: namely, we will �lose the irle�.2.6 Set-theoreti modelsLet us then show with more details how we shall proeed. We do not need to de�nea partiular language, the de�nition of types will su�e. Here, we assume thattypes are de�ned by the following syntax:

t ::= 0 | 1 | t→→→t | t×××t | ¬¬¬t | t∨∨∨t | t∧∧∧twhere 0 and 1 respetively orrespond to the empty and universal types (these aresometimes denoted by the pair ⊥, ⊤ or Bottom, Top). The formal de�nition ofthe type algebra, whih inludes reursive types and basi types, will be given inSetion 3.1.The seond step is to de�ne preisely what a set-theoreti model for these typesis. As Hindley and Longo [Hindley and Longo 1980℄ give some general onditionsJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 9that haraterise models of λ-alulus, so here we want to give the onditions thatan interpretation funtion must satisfy in order to haraterise a set-theoreti modelof our types. So let T be the set of types, D some set, and J_K an interpretationfuntion from T to P(D). The onditions that J_K must satisfy to de�ne a set-theoreti model are mostly straightforward, namely:(1) Jt1∨∨∨t2K = Jt1K ∪ Jt2K(2) Jt1∧∧∧t2K = Jt1K ∩ Jt2K(3) J¬¬¬tK = D\JtK(4) J1K = D(5) J0K = ∅(6) Jt×××sK = JtK × JsK(7∗) Jt→→→sK = ???The �rst six onditions onvey the intuition that our model is set theoreti:so the intersetion of types must be interpreted as set intersetion, the union oftypes as set-theoreti union and so on (the sixth ondition requires some losureproperties on D but we prefer not to enter in suh a level of detail at this point of ourpresentation). But the de�nition is not omplete yet as we still have to establish theseventh ondition (highlighted by a ∗) that onstrains the interpretation of arrowtypes. This ondition is more ompliated. Again it must onvey the intuition thatthe interpretation is set-theoreti, but while the �rst six onditions are languageindependent, this ondition strongly depends on the language and in partiular onthe kind of funtions we want to implement in our language. We give detailedexamples of this in [Frish 2004℄. The set-theoreti intuition we have of funtionspaes is that a funtion is of type t→→→s if whenever applied to a value of type t itreturns a result of type s. Intuitively, if we interpret funtions as binary relations on
D, then Jt→→→sK is the set of binary relations in whih if the �rst projetion is in (theinterpretation of) t, then the seond projetion is in s, namely {f ⊆ D2 | ∀(d1, d2) ∈

f. d1 ∈ JtK ⇒ d2 ∈ JsK }. Note that this set an also be written P(JtK × JsK), wherethe overline denotes set omplement (with respet to D or D2). If the language isexpressive enough, we an do as if every binary relation in this set was an elementof Jt→→→sK; thus, we would like to say that the seventh ondition is:
Jt→→→sK = P(JtK × JsK) (2)But this is ompletely meaningless. First, tehnially, this would imply that

P(D2) ⊆ D, whih is impossible for ardinality reasons. Also, remember that wewant eventually to re-interpret types as sets of values of the language, and funtionsin the language are not binary relations (they are syntati objets). However whatreally matters is not the exat mathematial nature of the elements of D, but onlythe relations they reate between types. The idea then is to do as if the aboveondition held.Sine this point is entral to our model, let us explain it di�erently. Reallthat the only reason why we want to aurately state what the set-theoreti modelof types is, is to preisely de�ne the subtyping relation for syntati types. Inother words, we do not de�ne an interpretation of types in order to formally andJournal of the ACM, Vol. V, No. N, Month 20YY.



10 · Alain Frish et al.mathematially state what the syntati types mean but, more simply, we de�ne itin order to state how they are related. So, even if we would like to say that a type
t→→→s must be interpreted in the model as P(JtK × JsK) as stated by (2), for whatit onerns the goal we are aiming at, it is enough to require that a model mustinterpret funtional types so that the indued subtyping relation is the same as theone the ondition (2) would indue, that is:

Jt1→→→s1K ⊆ Jt2→→→s2K ⇐⇒ P(Jt1K × Js1K) ⊆ P(Jt2K × Js2K)and similarly for any Boolean ombination of arrow types.Formally, we assoiate (see De�nition 4.3 in Setion 4.2) to J_K an extensionalinterpretation E(_) that behaves as J_K exept for arrow types, for whih we usethe ondition above as de�nition:E(t→→→s) = P(JtK × JsK)Note that we use J_K in the right-hand side of this equation, that is, we onlyre-interpret top-level arrow types. Now we an express the fat that J_K behaves(from the point of view of subtyping) as if funtions were binary relations. This isobtained by writing the missing seventh ondition, not in the form of (7∗), but asfollows:(7) JtK = ∅ ⇐⇒ E(t) = ∅or, equivalently, Jt1K ⊆ Jt2K ⇐⇒ E(t1) ⊆ E(t2).5To put it otherwise, if we wanted an interpretation J_K of the types that werefaithful with respet to the semantis of the language, then we should require forall t that JtK = E(t). But for ardinality reasons this is impossible in a set-theoretiframework. However we do not need suh a strong onstraint on the de�nition of
J_K sine all we ask to J_K is to haraterise the ontainment of types, and to thatend it su�es to haraterise the zeros of J_K, sine

s ≤ t ⇐⇒ JsK ⊆ JtK ⇐⇒ JsK ∩ JtK = ∅ ⇐⇒ Js∧∧∧¬¬¬tK = ∅Therefore, instead of asking that J_K and E(_) oinide on all points, we require aweaker onstraint, namely that they have the same zeros:
JtK = ∅ ⇐⇒ E(t) = ∅This is the essene of our de�nition of models of the type algebra (De�nition 4.4 inSetion 4.2).We said that the above seventh ondition (atually, the de�nition of the exten-sional interpretation) depends on the language the type system is intended for.Previous work [Frish 2004℄ shows di�erent variations of this onditions to mathdi�erent sets of de�nable transformations. However, we an already see that theondition above aounts for languages in whih funtions possibly are(1) Non-deterministi: sine the ondition does not prevent the interpretation ofa funtion spae to ontain a relation with two pairs (d, d1) and (d, d2) with

d1 6= d2.
5Indeed, Jt1K ⊆ Jt2K ⇐⇒ Jt1K \ Jt2K = ∅ ⇐⇒ Jt1∧∧∧¬¬¬t2K = ∅ ⇐⇒ E(t1∧∧∧¬¬¬t2) = ∅ ⇐⇒E(t1) \ E(t2) = ∅ ⇐⇒ E(t1) ⊆ E(t2).Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 11(2) Non-terminating : sine the ondition does not fore a relation in Jt→→→sK to haveas �rst projetion the whole JtK. A di�erent reason for this is that every arrowtype is inhabited (note indeed that the empty set belongs to the interpretationof every arrow type), so in partiular are all the types of the form t→→→0; now,all the funtions in suh types must be always non-terminating on their domain(if they returned a value this would inhabit 0).(3) Overloaded : here, by overloading, we mean funtions that an be applied tomany di�erent types, and whose results' type an depend on the type of theargument.6 This is subtler than the two previous ases as it is a onsequeneof the fat that ondition does not fore J(t1∨∨∨t2)→→→(s1∧∧∧s2)K to be equal to
J(t1→→→s1)∧∧∧(t2→→→s2)K, (the equality instead holds in λ-alulus with union andintersetion types [Barbanera et al. 1995℄), but just the former to be inludedin the latter. Imagine indeed that the language at issue does not allow theprogrammer to de�ne overloaded funtions. Then it may not be possible tode�ne funtions that distinguish the types of their argument, and in partiularto have a funtion that when applied to an argument of type t1 returns a resultin s1 while returning a (possibly di�erent) s2 result for t2 arguments. Thereforethe only funtions in (t1→→→s1)∧∧∧(t2→→→s2) are those in (t1∨∨∨t2)→→→(s1∧∧∧s2) (this pointis disussed thoroughly in Setion 4.5 of our related survey [Castagna 2005℄).2.7 Bootstrapping the de�nitionNow that we have de�ned what a set-theoreti model for our types is, we an hoosea partiular one that we use to de�ne the rest of the system. Suppose that thereexists at least one pair (D, J_K) that satis�es the onditions of set-theoreti model,and hoose any suh pair, no matter whih one. Let us all this model the bootstrapmodel . This bootstrap model de�nes a partiular subtyping relation on our set oftypes T :

s ≤ t ⇐⇒ JsK ⊆ JtKWe an then pik any language that uses the types in T (and whose semantisonforms with the intuition underlying the model ondition on funtion types),de�ne its typing rules and use in the subsumption rule the subtyping relation ≤we have just de�ned. We write Γ ⊢ e : t for the typing judgement of the language.In this paper, we will onsider a λ-alulus with overloaded funtions and dynamitype-dispath. See Setion 3.1 for the syntax of the alulus, Setion 3.3 for itstype system and Setion 3.2 for its semantis (whih depends on the type systembeause of the dynami type-dispath onstrution).2.8 Closing the irleIn order to obtain type-safety for our alulus, we want the type system to enjoyproperties suh as subjet redution (Theorem 5.1) and progress (Theorem 5.2)stated in Setion 5.1. Beause of the subsumption rule in the type system, this anonly be obtained if our de�nition of set-theoreti models is meaningful with respet
6This use of the term �overloading� is pretty wide sine it inludes for instane polymorphifuntions. In this disussion, a non-overloaded funtion should be thought as a funtion thatomes with expliit input and output types. Journal of the ACM, Vol. V, No. N, Month 20YY.



12 · Alain Frish et al.to the operational semantis of our alulus. This is a �rst sanity-hek for ournotion of model.But, one type-safety has been established, there is another important question:what are the relations between the bootstrap model and the alulus? And inpartiular, what is the relation between the bootstrap model and the values of thealulus? Have we lost all the intuition underlying the �types as sets of values�interpretation?To answer these questions, we onsider a new interpretation of types as sets ofvalues in the alulus:
JtK

V
= {v | ⊢ v : t}A seond sanity-hek for our notion of model is then to require that this in-terpretation J_K

V
is a model. If this is the ase, we an use it to de�ne a newsubtyping relation on T :

s ≤V t ⇐⇒ JsK
V

⊆ JtK
VWe ould imagine to start again the proess, that is to use this subtyping relationin the subsumption rule of our language, and use the resulting sets of values tode�ne yet another subtyping relation and so on. But this is not neessary as theproess has already onverged. This is stated by one of the entral results of ourwork (Theorem 5.5 in Setion 5.2):

s ≤ t ⇐⇒ s ≤V tthat is, the subtyping relation indued by the bootstrap model already de�nes thesubtyping relation of the �types as sets of values� model of the resulting alulus.We have losed the irle we broke.3. THE CALCULUSIn this setion, we de�ne formally the syntax of types and expressions in our al-ulus (Setion 3.1), the operational semantis (Setion 3.2) and the type system(Setion 3.3). A type-heking algorithm will be presented in Setion 6.12.The semantis atually depends on the type-system, whih in turn depends on asubtyping relation to be de�ned (next setion). As a onsequene, we onsider herethe subtyping relation as a parameter of the de�nitions of the type system and ofthe semantis.3.1 SyntaxExpressions. To de�ne the alulus, we hoose a set of onstants C ranged bythe meta-variable c (they will be elements of basi types).The terms of the alulus are alled expressions and are de�ned by the followingJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 13grammar.
e ::= c onstant
| x variable
| (e, e) pair
| πi(e) projetion (i ∈ {1, 2})
| µf(t→→→t; . . . ; t→→→t).λx.e abstration
| e e appliation
| (x = e ∈ t ? e|e) dynami type dispath
| rnd(t) non-deterministi hoiewhere t ranges over types, de�ned in the next paragraph.We write E for the set of expressions. The syntax for the alulus deserves fewomments. We introdue an expliit onstrution for reursive funtions, whihombines λ-abstration and a �x-point operator. The reason is that we want toexpress non-terminating expressions, but still restrit reursion to funtions only.The identi�ers f and x at as binders in the body of the funtion. The λ-abstrationomes with an non-empty sequene of funtion types (we all it the interfae of thefuntion): if more than one type is given, we are in the presene of an overloadedfuntion. As we will see later in the type system, we adopt presriptive Churh-style for λ-abstrations: the types assigned to suh expressions an be read fromtheir signature, without onsidering their body. The reason, besides making type-heking feasible, is that beause (losed and well-typed) λ-abstrations are values,they an be subjet to dynami type dispath and we do not want to rely on thewhole type system to deide whether a λ-abstration has some type or not.The non-deterministi hoie onstrution rnd(t) piks an arbitrary expression oftype t. We introdued this operator in the alulus in order to demonstrate subtletyping issues oming from non-determinism. This operator an be used to modelinternal or external non determinism suh as inputs or side e�ets.The only data onstrutor in the alulus is the pair. General tuples and taggedvalues an be enoded by nested pairs and onstants. Similarly, Appendix A.1shows how to enode disjoint sums with pairs and onstants.Types. Types are essentially those introdued in Setion 2.6 (modulo Booleanequivalene) to whih we add basi types (the types of onstant expressions). Inorder to simplify the presentation of reursive types, we are going to onsider po-tentially in�nite regular terms produed by the following signature:

t ::= b basi type
| t×××t produt type
| t→→→t funtion type
| t∨∨∨t union type
| ¬¬¬t omplement type
| 0 empty typeBy regular, we mean that terms have only but a �nite number of di�erent sub-terms. The meta-variable b ranges over a �xed set of basi types. We write t1\\\t2as an abbreviation for t1∧∧∧¬¬¬t2, t1∧∧∧t2 as an abbreviation for ¬¬¬(¬¬¬t1 ∨ ¬¬¬t2), and 1as an abbreviation for ¬¬¬0. We will all atom the immediate appliations of typeJournal of the ACM, Vol. V, No. N, Month 20YY.



14 · Alain Frish et al.onstrutors: basi types, produt types, funtion types (these are the �atoms� forBoolean ombinators). Sine we want types to denote sets, we need to impose someonstraints to avoid ill-formed types suh as a solution to t = t∨∨∨t (whih does notarry any information about the set denoted by the type) or to t = ¬¬¬t (whih annotrepresent any set). Namely, we say that a term is a type if it does not ontain anyin�nite branh without an atom. Let us all T the set of types.The onditions above say that the binary relation ⊲ ⊆ T 2 de�ned by t1∨∨∨t2 ⊲ ti,
¬¬¬t⊲t is Noetherian (that is, strongly normalizing). This gives an indution prinipleon T that we will use without any further expliit referene to the relation ⊲.3.2 Operational semantisBeause of the dynami type dispath, the semantis of the alulus depends on itstype system. For now, we simply assume that a relation between expressions andtypes, written ⊢ e : t is given. It will be de�ned in the next setion.Definition 3.1. An expression e is a value if it is losed (no free variable),well-typed (⊢ e : t for some type t), and produed by the following grammar:

v ::= c | (v, v) | µf(. . .).λx.eWe write V for the set of all values.We de�ne a small-step operational all-by-value semantis ; for the alulus.There are four basi redution rules (we write e[x1 := e1; x2 := e2; . . .] for theexpression obtained from e by a apture-avoiding simultaneous substitution of xiby ei):
ev ; e[f := e′; x := v] if e = µf(. . .).λx.e′

(x = v ∈ t ? e1|e2) ;

{

e1[x := v] if ⊢ v : t
e2[x := v] if ⊢ v : ¬¬¬t

πi(v1, v2) ; virnd(t) ; e if ⊢ e : tThe relation ; is further extended by an indutive ontext rule:
C[e] ; C[e′] if e ; e′where the notion of (immediate) ontext is de�ned by:

C[] ::= ([], e) | (e, [])
| []e | e[]
| (x = [] ∈ t ? e|e) | (x = e ∈ t ? []|e) | (x = e ∈ t ? e|[])
| πi([])
| µf(. . .).λx.[]As usual, a type safety result will be obtained by a ombination of two lem-mas: subjet redution (or type preservation) and progress (losed and well-typedexpressions whih are not values an be redued).The redution rule for appliation requires the argument to be a value (all-by-value). In order to understand why, let us onsider the appliation (µf(t → t×××t; s →

s×××s).λx.(x, x))(rnd(t∨∨∨s)). The type system will assign to the abstration the type
(t→→→t×××t)∧∧∧(s→→→s×××s). A set-theoreti reasoning shows that this type is a subtype of
(t∨∨∨s) → ((t×××t)∨∨∨(s×××s)). The type system also assigns to the argument rnd(t∨∨∨s)Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 15the type t∨∨∨s. It will thus also assign the type (t×××t)∨∨∨(s×××s) to the appliation. If thesemantis permits to redue this appliation, we would get as a result the expression
(rnd(t∨∨∨s), rnd(t∨∨∨s)) whose most preise stati type is (t∨∨∨s)×××(t∨∨∨s). Clearly, thistype is (in general) a strit supertype of (t×××t)∨∨∨(s×××s). So, if the semantis does notfore the argument to be a value in order to redue an appliation, we ould notobtain the subjet redution lemma.Similarly, the redution rule for projetion requires its argument to be a value.To understand why, onsider the expression e = π1(e1, e2) where e1 is an expressionof type t1 and e2 is a looping expression of type 0 (e.g. (µf(1 → 0).λx.fx)c). Thetype system will assign the type t1×××0 to e, but in our system t1×××0 is an empty typebeause, intuitively, a set-theoreti Cartesian produt with an empty omponent isitself empty. If e ould be redued to e1, it would be a violation of type preservation.The same argument applies to the dynami type dispath. If we allowed to redue
(x = e ∈ t ? e1|e2) to e1[x := e] when ⊢ e : t, even if e is not a value, we ouldbreak type preservation. Consider for instane the ase where ⊢ e : 0. In this ase,the type system does not hek anything about the branhes e1 and e2 (the reasonfor this is explained in details later on) and so e1 ould be ill-typed. Note thatwhen e is a value, then the dynami type dispath an always be redued. Indeed,beause our type onnetives will be interpreted in a set-theoreti way, we alwayshave ⊢ v : t or ⊢ v : ¬¬¬t (for any value v and any type t).3.3 Type systemThe semantis we just introdued depends on the typing judgment Γ ⊢ e : t where
Γ is a �nite mapping from variables to types (we write ⊢ e : t when Γ is empty).This judgment, in turn, depends on a subtyping relation ≤ between types that weare going to introdue later on. For now, we assume it is a parameter of the typesystem.For eah onstant c, we assume given a basi type bc. The rules are:

Γ ⊢ e : t1 t1 ≤ t2
Γ ⊢ e : t2

(subsum)
Γ ⊢ c : bc

(const)
Γ ⊢ x : Γ(x)

(var)

Γ ⊢ e : t1×××t2
Γ ⊢ πi(e) : ti

(proj)
Γ ⊢ e1 : t1 → t2 Γ ⊢ e2 : t1

Γ ⊢ e1e2 : t2
(appl)

t =
∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j) t 6≃ 0
∀i = 1..n.Γ, (f : t), (x : ti) ⊢ e : si

Γ ⊢ µf(t1→→→s1; . . . ; tn→→→sn).λx.e : t
(abstr)

Γ ⊢ e : t0

{

t0 6≤ ¬¬¬t ⇒ Γ, (x : t0∧∧∧t) ⊢ e1 : s
t0 6≤ t ⇒ Γ, (x : t0\\\t) ⊢ e2 : s

Γ ⊢ (x = e ∈ t ? e1|e2) : s
(case)The rule (subsum) auses the type system to depend on the subtyping relation toJournal of the ACM, Vol. V, No. N, Month 20YY.



16 · Alain Frish et al.be de�ned. The rules (const), (pair), (var), (proj), (rnd), and (appl) are standardor straightforward.The rule (abstr) is a little bit triky. Eah arrow type ti→→→si in the funtioninterfae is interpreted as a onstraint to be heked. The body of the abstration isthus type-heked one for eah suh onstraint. When onsidering the type ti→→→si,the variable x is assumed to have type ti and the body is heked against type si.Also, the variable f is assumed to have type t, whih is also the type given to thewhole funtion. Quite intuitively, this type is obtained by taking the intersetionof all the types ti→→→si. But we also add to this intersetion any �nite number ofomplement of arrow types, provided the type t does not beome empty. This mightsound surprising, but the reason is atually simple: we want types to be interpretedas sets of values in suh a way that Boolean onnetives behave as their set-theoretiounterpart. In partiular, the union of t and ¬¬¬t must always be equivalent to 1,that is, we need to have the following property: ∀v.∀t.(⊢ v : t) or (⊢ v : ¬¬¬t). Inpartiular, sine a (losed and well-typed) abstration is value, it must have type
(t→→→s) or type ¬¬¬(t→→→s) for any hoie of t and s. If (t→→→s) is a supertype of theintersetion ∧ ti→→→si, the abstration is known, thanks to the subsumption rule, tohave type (t→→→s). Otherwise, the abstration must have type ¬¬¬(t→→→s), but sine weannot use subsumption to prove it, then we need to provide a way to prove it hastype ¬¬¬(t→→→s). This is why we introdue suh omplements of arrow types in therule (abstr). More omments about this rule an be found in Setion 7.3.The rule (case) is easier to read. First, we need to �nd a type t0 for the expres-sion whose result will be dynamially type-heked. If this type has a non-emptyintersetion with t (t0 6≤ ¬¬¬t), then the �rst branh might be used. In this ase, inorder for the whole expression to have type s, we need to hek that e1 has also type
s, assuming that x has type t∧∧∧t0. Indeed, at runtime, the variable x will be boundto a value resulting from the evaluation of e0. Beause of subjet redution, thisvalue is neessarily of type t0. But in order to type-hek e1, we an also assumethat the value has type t. If t0 ≤ ¬¬¬t, then the �rst branh annot be used, andwe don't need to type-hek e1. Similarly for e2, replaing t with ¬¬¬t. The abilityto ignore e1 and/or e2 when omputing the type for (e ∈ t ? e1 | e2) is impor-tant to type-hek overloaded funtion. As an example, onsider the abstration
µf(b1→→→b1; b2→→→b2).λx.(x ∈ b1 ? c1 | c2) where b1 and b2 are two non-intersetingbasi types and c1 (resp. c2) is a onstant of type b1 (resp. b2). The rule (abstr),when it onsiders the arrow type b1→→→b1, heks that the body has type b1 assumingthat x has type b1. Clearly, the typing rule for the dynami type dispath mustdisard in this ase the type of the seond branh.As an aside note that the use of the ex falso quodlibet rule (⊥) yields a simplerformulation of the ase rule:
Γ, x : 0 ⊢ e : t

(⊥)
Γ ⊢ e : t0 Γ, (x : t0∧∧∧t) ⊢ e1 : s Γ, (x : t0\\\t) ⊢ e2 : s

Γ ⊢ (x = e ∈ t ? e1|e2) : s
(ase)The reason why we preferred the previous formulation is that it permits a strongerand simpler substitution lemma. A seond reason to prefer the previous formulationis that simpler (ase) rule above does not easily extend to the full version of CDuewith general pattern mathing, sine it would need speial treatment for patternswithout any apture variable (sine these would not produe any x : 0 hypothesisJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 17in the environment).4. SUBTYPINGAt this point, we have given the alulus, an operational semantis whih dependson its type system, whih, in turn, depends on a subtyping relation still to bede�ned. The last missing step to omplete the de�nition of our system is thesubtyping relation. This will be de�ned by formalizing the ideas we outlined inSetions 2.6-2.8.4.1 Set-theoreti interpretations of typesDefinition 4.1. A set-theoreti interpretation of T is given by a set D and afuntion J_K : T → P(D) suh that, for any types t1, t2, t:�Jt1∨∨∨t2K = Jt1K ∪ Jt2K�J¬¬¬tK = D\JtK�J0K = ∅(A onsequene of the onditions is that Jt1∧∧∧t2K = Jt1K∩Jt2K, Jt1\\\t2K = Jt1K\Jt2K,and J1K = D.)This de�nition does not say anything about the interpretation of atoms. Atually,using an indution on types, we see that set-theoreti interpretations with domain
D orrespond univoally to funtions from atoms to P(D).A set-theoreti interpretation J_K : T → P(D) indues a binary relation ≤JK⊆
T 2 de�ned by:

t ≤JK s ⇐⇒ JtK ⊆ JsKThis relation atually only depends on the set of empty types. Indeed, we have:
Jt1K ⊆ Jt2K ⇐⇒ Jt1K ∩ (D\Jt2K) = ∅ ⇐⇒ Jt1∧∧∧¬¬¬t2K = ∅. We also get propertiesof the relation ≤JK � for free �, suh as its transitivity, or the monotoniity of the
∨∨∨ and ∧∧∧ onstrutors, and so on.4.2 Models of typesWe are going to de�ne a notion of model of the type algebra. Intuitively, a modelis a set-theoreti interpretation suh that type onstrutors are interpreted in suhas way that the indued relation ≤JK apture their essene (in the type system ofthe alulus), at least as far as subtyping is onerned.As we explained in Setion 2.6, the way to formalize it onsists in assoiatingto the interpretation J_K another interpretation E(_), alled extensional, and thento require, for J_K to be a model, that J_K and E(_) behave the same as longas subtyping is onerned (that is: JtK ⊆ JsK ⇐⇒ E(t) ⊆ E(s) or, equivalently,
JtK = ∅ ⇐⇒ E(t) = ∅).For eah basi type b, we assume there is a �xed set of onstants BJbK ⊆ C whoseelements are alled onstants of type b. Note that for two basi types b1, b2, thesets BJbiK an have a non-empty intersetion. For any onstant c, we assume thatthe type bc is a singleton: BJbcK = {c}.A produt type t1×××t2 will of ourse be interpreted extensionally as the Cartesianprodut Jt1K×××Jt2K. Journal of the ACM, Vol. V, No. N, Month 20YY.



18 · Alain Frish et al.Things are more ompliated for a funtion type t1→→→t2. Its extensional inter-pretation should be the set of set-theoreti funtions (that is, funtional graphs)
f suh that ∀d. d ∈ Jt1K ⇒ f(d) ∈ Jt2K. However, the alulus we have in mindan express non-terminating and/or non-deterministi funtions as well. This sug-gests to onsider arbitrary binary relations instead of just funtional graphs. Also,the alulus has a notion of type error: it is not possible to apply an arbitraryfuntion to an arbitrary value. We are going to take Ω as a speial element todenote this type error. Following this disussion, we interpret the funtion type
t1→→→t2 as the set of binary relations f ⊆ D ×DΩ (where DΩ = D + {Ω}) suh that
∀(d, d′) ∈ f. d ∈ Jt1K ⇒ d′ ∈ Jt2K.Definition 4.2. If D is a set and X, Y are subsets of D, we write DΩ for
D + {Ω} and de�ne X → Y as:

X → Y = {f ⊆ D × DΩ | ∀(d, d′) ∈ f. d ∈ X ⇒ d′ ∈ Y }Note that if we replae DΩ with D in this de�nition, then X → Y is always asubset of D → D. As we will see shortly, this would imply that any arrow type isa subtype of 1→→→1. Thanks to the subsumption rule, the appliation of any well-typed funtion to any well-typed argument would then be itself well-typed. Clearly,this would break type-safety of the alulus. With De�nition 4.2, instead, we have
X → Y ⊆ D → D if and only if D = X .We an now give the formal de�nition of the extensional interpretation assoiatedto a set-theoreti interpretation.Definition 4.3. Let J_K : T → P(D) be a set-theoreti interpretation. We de-�ne its assoiated extensional interpretation as the unique set-theoreti interpretationE(_) : T → P(ED) (where ED = C + D2 + P(D × DΩ)) suh that:E(b) = BJbK ⊆ CE(t1×××t2) = Jt1K × Jt2K ⊆ D2E(t1→→→t2) = Jt1K → Jt2K ⊆ P(D × DΩ)Finally, we an formalize the fat that a set-theoreti interpretation indues thesame subtyping relation as if the type onstrutors were interpreted in an exten-sional way.Definition 4.4. A set-theoreti interpretation J_K : T → P(D) is a model ifit indues the same subtyping relation as its assoiated extensional interpretation:

∀t1, t2 ∈ T . Jt1K ⊆ Jt2K ⇐⇒ E(t1) ⊆ E(t2)Thanks to a remark in Setion 4.1, the ondition for a set-theoreti interpretationto be a model an be redued to:
∀t ∈ T . JtK = ∅ ⇐⇒ E(t) = ∅At this point, we an derive many properties about ≤J_K whih diretly followfrom the fat that it is indued by a model. For instane, the o-/ontra-variane ofthe arrow type onstrutor, and equivalenes suh as (t1→→→s)∧∧∧(t2→→→s) ≃ (t1∨∨∨t2)→→→s,an be immediately derived from the de�nition of the extensional interpretation.The meta-theoreti study of the system relies in a ruial way on many of suhJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 19properties. With a more axiomati approah for de�ning the subtyping relation,e.g. by a system of indutive or oindutive rules, we would probably need muhmore work to establish these properties, and we would not have the same level oftrust that we did not forget any rule.4.3 Well-foundednessThe notion of model aptures the intended loal behavior of type onstrutors withrespet to subtyping. However, it fails to apture a global property of the alulus,namely that values are �nite binary trees (where leaves are either onstants orabstrations). For instane, let us onsider the reursive type t = t×××t. Intuitively,a value v has this type if and only if it is a pair (v1, v2) where v1 and v2 also havetype t. To build suh a value, we would need to onsider an in�nite tree, whih isruled out. As a onsequene, the type t ontains no value.We will introdue a new riterion to apture this property of �nite deompositionof pairs.Definition 4.5. A set-theoreti interpretation J_K : T → P(D) is struturalif:�D2 ⊆ D;�for any types t1,t2: Jt1×××t2K = Jt1K × Jt2K;�the binary relation on D indued by (d1, d2) ⊲ di is Noetherian.Definition 4.6. A model J_K : T → P(D) is well-founded if it indues thesame subtyping relation as a strutural set-theoreti interpretation.5. MAIN RESULTSLet us �x an arbitrary model J_K : T → P(D), whih we all the bootstrap model.It indues a subtyping relation, whih we simply write ≤. In turn, this subtypingrelation de�nes a typing judgment Γ ⊢ e : t for the alulus and thus also a notion ofvalue and a redution relation e ; e′. We an now state four groups of theoretialresults about our system. This �rst group (Setion 5.1) expresses the fat thatour notion of models implies that the type system and the semantis are mutuallyoherent. The seond group (Setion 5.2) justi�es our approah for de�ning thesubtyping relation with a detour through the notion of models: indeed, we an in�ne re-interpret types as sets of values, and this reates a new model equivalent tothe bootstrap model (if it is well-founded). The third group of results (Setion 5.3)shows that the notion of model is not void, by expressing the existene of (severaldi�erent) models satisfying the various onditions. Finally, we fous (Setion 5.4) onthe e�etiveness of the subtyping and typing relations and devise simple subtypingalgorithms.5.1 Type soundnessAs announed earlier, we have the two lassial lemmas whih entail type soundness(proofs in Setion 6.6).Theorem 5.1 (Subjet redution). Let e be an expression and t a type. If
(Γ ⊢ e : t) and (e ; e′), then (Γ ⊢ e′ : t). Journal of the ACM, Vol. V, No. N, Month 20YY.



20 · Alain Frish et al.Theorem 5.2 (Progress). Let e be a well-typed losed expression. If e is nota value, then there exists an expression e′ suh that e ; e′.It is worth notiing that the proof of Theorem 5.2 (given in Setion 6.6) does notuse redutions under abstrations or inside the branhes of dynami type dispath,therefore Progress still holds if we disallow suh redutions. Of ourse, subjetredution also holds in that ase. This means that a weak redution strategy (asimplemented typially in programming languages) enjoys type soundness, too. Inthe setting of programming languages, proving the subjet redution property alsofor a semantis that inludes strong redution rules is useful beause these rulesorrespond to possible ompile-time optimizations.Theorem 5.3. For every types t and t1 suh that t ≤ t1→→→1, there exists a type
t2 suh that, for every value v:

⊢ v : t2 ⇐⇒ ∃vf , vx. (vfvx
⋆
; v) ∧ (⊢ vf : t) ∧ (⊢ vx : t1)This type is the smallest solution to the equation t ≤ t1→→→s.This result is proved in Setion 6.11. The type t2 in the statement of the theoremabove represents exatly all the possible results (i.e. is the set of all values that)we may get when applying a losed expression e1 of type t to a losed expression

e2 of type t1. Sine t ≤ t1→→→t2, the type system allows us to derive type t2 forthe appliation e1e2. In other words, the typing rule (appl) is loally exat: itdoes not introdue any new approximation to those already made when typing itsarguments.5.2 Closing the loopThe type system naturally de�nes a new interpretation of types as sets of values:
J_K

V
: T → P(V ), t 7→ {v | ⊢ v : t}It turns out that this interpretation satis�es the onditions of De�nitions 4.1and 4.5 (proof in Setion 6.4):Theorem 5.4. The funtion J_K

V
is a strutural set-theoreti interpretation.A natural question is whether this set-theoreti interpretation is a model. If thisis the ase, we would like to ompare the subtyping relation it indues with the oneused to de�ne the type system (whih was indued by the bootstrap model). Thefollowing theorem answers both questions (proof in Setion 6.5):Theorem 5.5. The following properties are equivalent:(1 ) The interpretation J_K

V
is a model.(2 ) The interpretations J_K

V
and J_K indue the same subtyping relation.(3 ) The bootstrap model J_K is well-founded.When the interpretation J_K
V

is a model, we ould use it as a new bootstrapmodel, de�ne a new type system, and so on. The theorem says that this iterationis, beause the old and the new bootstrap model already indue the same subtypingrelation.Note that the type soundness results do not depend on the fat that the interpre-tation J_K
V
is a model. It holds even if the bootstrap model is not well-founded.Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 215.3 Constrution of modelsAll the results above would be void if we ould not build a model. In this setion,we laim the existene of models with spei� properties (proofs in Setion 6.8 andSetion 6.10). Models an be ompared by the amount of subtyping they allow. If
J_K1 and J_K2 are two models, we write J_K1 � J_K2 if:

∀t, s ∈ T .JtK1 ≤ JsK1 ⇒ JtK2 ≤ JsK2A model J_K2 is universal if J_K1 � J_K2 for any other model J_K1. In other words,a model is universal if the subtyping relation it indues is the largest possible one.Clearly, two universal models indue the same subtyping relation.Theorem 5.6. There exists a well-founded and universal model.The next theorem shows that the notions of universality and well-foundednessare not automati.Theorem 5.7. There exists a model whih is not well-founded. There exists awell-founded model whih is not universal.5.4 Deidability resultsFinally, our system would be of little pratial use if we were not able to deidethe subtyping and typing relations. Fortunately, the deidability of the inlusionof basi types implies the following theorem.Theorem 5.8. The subtyping relation indued by universal models is deidable.The proof of deidability (Setion 6.9) essentially relies on three omponents: (i)the regularity of types, (ii) some algebrai properties of universal models, and (iii)the equivalene between subtyping and type emptiness problems (remember that
s ≤ t ⇐⇒ s\t ≃ 0.). The algebrai properties of the model an be used todeompose a type t into a set of types ti's suh that: (i) t ≃ 0 if and only if all
ti ≃ 0 and (ii) the ti's are Boolean ombinations of sub-terms of t (Setion 6.2). Wealso introdue the onept of simulation (De�nition 6.9) whih haraterizes sets oftypes that are losed with respet to the previous deomposition. By onstrutiona type is equivalent to 0 if and only if there exists a simulation ontaining it (in thatase, the simulation represents a o-indutive proof of its emptiness). A regular typehas only a �nite number of unique sub-terms, therefore it su�es to enumerate allthe possible sets of Boolean ombinations of its sub-terms and test whether any ofthem is a simulation (whih is deidable for �nite sets, and more e�ient algorithmsexist).Deidability of subtyping does not immediately yield deidability of the typingrelation, the problem being that the use of the negated arrows in the typing rule(abstr) makes the minimum typing property fail. Therefore we need to introdue anew syntati ategory, type shemes: a type-sheme represents the set of all validtypes for a well typed expression (Setion 6.12). This tehnial onstrution allowsus to state the deidability of the type-heking problem.Theorem 5.9. When the subtyping relation is deidable, the type heking prob-lem (deiding whether Γ ⊢ e : t for given Γ, e, t) is deidable.Journal of the ACM, Vol. V, No. N, Month 20YY.



22 · Alain Frish et al.6. FORMAL DEVELOPMENTIn this setion, we establish the theorems stated in the previous setion and otherintermediate lemmas. It an be skipped in the �rst reading.6.1 Disjuntive normal forms for typesWe write A for atoms and we use the meta-variable a to range over atoms. Thereare three kinds of atoms (and values), whih we denote by the meta-variable uranging over the set U = {prod, fun,basi}.We write Afun for atoms of the form t1→→→t2, Aprod for atoms of the form t1×××t2,and Abasi for basi types. We have A = Afun + Aprod + Abasi. For whatonerns values, their kinding too is straightforward: values of the form c, (v1, v2),and µf(. . .).λx.e have respetively kind basi,prod, and fun.Every type an be seen as a �nite Boolean ombination of atoms. It is onvenientto work with disjuntive normal forms.Definition 6.1. A (disjuntive) normal form τ is a �nite set of pairs of �nitesets of atoms, that is, an element of Pf (Pf (A ) × Pf (A )) (where Pf denotes the�nite powerset).If J_K : T → P(D) is an arbitrary set-theoreti interpretation and τ a normalform, we de�ne JτK as:
JτK =

⋃

(P,N)∈τ

⋂

a∈P

JaK ∩
⋂

a∈N

(D\JaK)(Note that, with the onvention that an intersetion over an empty set is taken tobe D, JτK ⊆ D.)Lemma 6.2. For every type t ∈ T , it is possible to ompute a normal form N (t)suh that for every set-theoreti interpretation J_K, JtK = JN (t)K.Proof: We will atually de�ne two funtions N and N ′, both from types to
Pf (Pf (A ) × Pf (A )), by mutual indution over types.

N (0) = ∅

N (a) = {({a}, ∅)}
N (t1∨∨∨t2) = N (t1) ∪ N (t2)
N (¬¬¬t) = N ′(t)
N ′(0) = {(∅, ∅)}
N ′(a) = {(∅, {a})}
N ′(t1∨∨∨t2) = {(P1 ∪ P2, N1 ∪ N2) | (P1, N1) ∈ N ′(t1), (P2, N2) ∈ N ′(t2)}
N ′(¬¬¬t) = N (t)We hek by indution over the type t the following property:

JtK = JN (t)K = D\JN ′(t)KAs an example, onsider the type t = a1∧∧∧(a2∨∨∨¬¬¬a3) where a1, a2, a3 are threeatoms. Then N (t) = {({a1, a2}, ∅), ({a1}, {a3})}. This orresponds to the fatJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 23that t and (a1∧∧∧a2)∨∨∨(a1∧∧∧¬¬¬a3) have the same interpretation for any set-theoretiinterpretation of the type algebra.Note that the onverse result is true as well: for any normal form τ , we an �nda type t suh that JtK = JτK for any set-theoreti interpretation. Normal forms arethus simply a di�erent, but handy, syntax for types. In partiular, we an rephrasein De�nition 4.4 the ondition for a set-theoreti interpretation to be a model as:for any normal form τ , JτK = ∅ ⇐⇒ E(τ) = ∅.For these reason heneforth we will often onfound the notions of types andnormal form, and we will often speak of the type τ , taking the latter as a anonialrepresentative of all the types in N −1(τ).6.2 Study of the subtyping relationDe�nition 4.4 is rather intensional. In this setion, we establish a more extensionalriterion for a set-theoreti interpretation to be a model.Let J_K be a set-theoreti interpretation. We are interested in omparing theassertions E(τ) = ∅ and JτK = ∅, for a normal form τ . Clearly, E(τ) = ∅ isequivalent to:
∀(P, N) ∈ τ.

⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a) (3)Let us write EbasiD = C , EprodD = D2, EfunD = P(D × DΩ). We have ED =
⋃

u∈U EuD where U = {prod, fun,basi}. We an thus rewrite (3) as:
∀u ∈ U.∀(P, N) ∈ τ.

⋂

a∈P

(E(a) ∩ EuD) ⊆
⋃

a∈N

(E(a) ∩ EuD) (4)Sine JaK ∩ EuD = ∅ if a 6∈ Au and JaK ∩ EuD = JaK if a ∈ Au, we an rewrite (4)as:
∀u ∈ U.∀(P, N) ∈ τ.(P ⊆ Au) ⇒

(

⋂

a∈P

E(a) ⊆
⋃

a∈N∩Au

E(a)

) (5)(where the intersetion is taken to be EuD when P = ∅.)To further deompose these prediates, we will take advantage of the set-theoretiinterpretation of the semanti subtyping and rely on two set-theoreti fats, one forprodut types, one for arrow types. Let us introdue some new notation that willmake formulae learer, and then start with produt types, following an argumentsimilar to the one used by Hosoya, Vouillon and Piere [Hosoya et al. 2000℄.Notation 6.3. Let S1, S2 denote two sets suh that S1 ⊆ S2. We use S1
S2 todenote the omplement of S1 with respet to S2, that is S2\S1.Lemma 6.4. Let (Xi)i∈P , (Xi)i∈N (resp. (Yi)i∈P , (Yi)i∈N ) be two families ofsubsets of D1 (resp. D2). Then:

(

⋂

i∈P

Xi × Yi

)

\

(

⋃

i∈N

Xi × Yi

)

=
⋃

N ′⊆N

(

⋂

i∈P

Xi\
⋃

i∈N ′

Xi

)

×





⋂

i∈P

Yi\
⋃

i∈N\N ′

Yi



(with the onventions: ⋂i∈∅ Xi×Yi = D1×D2; ⋂i∈∅ Xi = D1 and ⋂i∈∅ Yi = D2)Journal of the ACM, Vol. V, No. N, Month 20YY.



24 · Alain Frish et al.Note that we use the same notation for elements in the families (Xi)i∈P and
(Xi)i∈N . This is not problemati sine the sets P and N an be di�erent.Proof: First, we notie that:

Xi × Yi
D1×D2

=
(

Xi
D1

× D2

)

∪
(

D1 × Yi
D2

)By distributing intersetions over unions, we get:
⋂

i∈N

Xi × Yi
D1×D2

=

⋃

N ′⊆N





⋂

i∈N ′

(

Xi
D1

× D2

)

∩
⋂

i∈N\N ′

(

D1 × Yi
D2

)



 =

⋃

N ′⊆N





⋂

i∈N ′

Xi
D1

×
⋂

i∈N\N ′

Yi
D2



And �nally:
(

⋂

i∈P

Xi × Yi

)

∩

(

⋂

i∈N

Xi × Yi
D1×D2

)

=

⋃

N ′⊆N





(

⋂

i∈P

Xi ∩
⋂

i∈N ′

Xi
D1

)

×





⋂

i∈P

Yi ∩
⋂

i∈N\N ′

Yi
D2







We get the expeted result by applying De Morgan laws.We get an immediate orollary.Lemma 6.5. Let P, N be two �nite subsets of Aprod. We have:
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a) ⇐⇒

∀N ′ ⊆ N.

t
∧∧∧

t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

|
= ∅ ∨

u
v ∧∧∧

t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2

}
~ = ∅(with the onvention ⋂a∈∅ E(a) = EprodD).We will now establish a similar result for arrow types. We �rst deompose theset-theoreti → operator (De�nition 4.2) into more primitive operators: powerset,omplement, Cartesian produt.Lemma 6.6. Let X, Y ⊆ D. Then:

X → Y = P

(

X × Y
DΩ

D×DΩ
)Proof: The result omes from a simple omputation:

X → Y = {f ⊆ D × DΩ | ∀(x, y) ∈ f. ¬(x ∈ X ∧ y 6∈ Y )}

= {f ⊆ D × DΩ | f ∩ X × Y
DΩ

= ∅}

= {f ⊆ D × DΩ | f ⊆ X × Y
DΩ

D×DΩ

}Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 25
Lemma 6.7. Let (Xi)i∈P and (Xi)i∈N be two families of subsets of D. Then:

⋂

i∈P

P(Xi) ⊆
⋃

i∈N

P(Xi) ⇐⇒ ∃io ∈ N.
⋂

i∈P

Xi ⊆ Xi0Proof: The ⇐ impliation is simple: if ⋂i∈P Xi ⊆ Xi0 with i0 ∈ N , then
⋂

i∈P P(Xi) = P(
⋂

i∈P Xi) ⊆ P(Xi0) ⊆
⋃

i∈N P(Xi). Let us prove the oppo-site diretion. We assume that ⋂i∈P P(Xi) ⊆
⋃

i∈N P(Xi). The set ⋂i∈P Xibelongs to all the P(Xi) for i ∈ P . It is thus in the union of all the P(Xi)for i ∈ N . We an thus �nd some i0 ∈ N suh that ⋂i∈P Xi ∈ P(Xi0), whihonludes the proof.Lemma 6.8. Let P and N be two �nite subsets of Afun. Then:
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a)

⇐⇒

∃(t0→→→s0)∈N. ∀P ′ ⊆ P.

t
t0\\\

(

∨∨∨

t→→→s∈P ′

t

)|
= ∅ ∨























P 6= P ′

∧u
v




∧∧∧

t→→→s∈P\P ′

s



\\\s0

}
~ = ∅(with the onvention ⋂a∈∅ E(a) = EfunD).Proof: The result follows from Lemmas 6.6, 6.7, and 6.4, by notiing that inthe ondition ⋂t→→→s∈P\P ′ JsK ⊆ Js0K whih appears, the onvention is to interpretthe intersetion as being DΩ if P = P ′, whih makes the inlusion impossible.Lemma 6.8 tells us how to deompose subtyping between arrow types. For in-stane, we an dedue from the lemma that E((t1→→→s1)∧∧∧(t2→→→s2)) ⊆ E(t→→→s) holdsif and only if the four following properties are satis�ed:�JtK = ∅ or Js1∧∧∧s2K ⊆ JsK�JtK ⊆ Jt1K or Js2K ⊆ JsK�JtK ⊆ Jt2K or Js1K ⊆ JsK�JtK ⊆ Jt1∨∨∨t2KLemmas 6.5 and 6.8, together with the property (5) suggest the following de�ni-tion and give immediately the result of Theorem 6.10 below.Definition 6.9 (Simulation). Let S be an arbitrary set of normal forms. Wede�ne another set of normal forms ES by:ES = {τ | ∀u ∈ U.∀(P, N) ∈ τ. (P ⊆ Au ⇒ CP,N∩Au

u )}Journal of the ACM, Vol. V, No. N, Month 20YY.



26 · Alain Frish et al.where:
CP,Nbasi ::= C ∩

⋂

b∈P

BJbK ⊆
⋃

b∈N

BJbK

CP,Nprod ::= ∀N ′ ⊆ N.











































N

(

∧∧∧

t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

)

∈ S

∨

N





∧∧∧

t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2



 ∈ S

CP,Nfun ::= ∃t0→→→s0 ∈ N. ∀P ′ ⊆ P.







































































N

(

t0∧∧∧
∧∧∧

t→→→s∈P ′

¬¬¬t

)

∈ S

∨



























P 6= P ′

∧

N



(¬¬¬s0)∧∧∧
∧∧∧

t→→→s∈P\P ′

s



 ∈ SWe say that S is a simulation if:
S ⊆ ESThe intuition is that if we onsider the statements of Lemmas 6.5 and 6.8 as if theywere rewriting rules (from right to left), then ES ontains all the types that we andedue in one step redution to be empty when we suppose that the types in S areempty. A simulation is thus a set that is already saturated w.r.t. suh a rewriting.In partiular, if we onsider the statements of Lemmas 6.5 and 6.8 as inferenerules for determining when a type is equal to 0, then ES is the set of immediateonsequenes of S , and a simulation is a self-justifying set, that is a o-indutiveproof of the fat that all its elements are equal to 0. Of ourse this latter propertywill play a ruial role to deide the subtyping relation (see Setion 6.9).Theorem 6.10. Let J_K : T → P(D) be a set-theoreti interpretation. Wede�ne a set of normal forms S by:

S = {τ | JτK = ∅}Then: ES = {τ | E(τ) = ∅}Proof: Immediate onsequene of Lemmas 6.5 and 6.8.Corollary 6.11. Let J_K be a set-theoreti interpretation of types. We de�neas above S = {τ | JτK = ∅}. Then J_K is a model if and only if S = ES .Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 27This Corollary implies that the ondition for a set-theoreti interpretation to be amodel depends only on the subtyping relation it indues.Corollary 6.12. Let J_K1 : T → P(D1) be a model and J_K2 : T → P(D2)be a set-theoreti interpretation. Then the following assertions are equivalent:�J_K2 is a model and it indues the same subtyping relation as J_K1.�for any type t, JtK1 = ∅ ⇐⇒ JtK2 = ∅.The following lemma, whih is an immediate orollary of Lemma 6.8 gives sev-eral properties about subtyping between arrow types in a model, whih will beneeded to study the meta-theory of the type system (see the proofs of Lemma 6.15,Lemma 6.21, Lemma 6.37).Lemma 6.13 (Strong disjuntion for arrows). Let ≤ be the subtyping re-lation indued by a model, and P ,N two �nite sets of arrow types. Then:
∧∧∧

a∈P

a ≤
∨∨∨

a∈N

a ⇐⇒ ∃a0 ∈ N.
∧∧∧

a∈P

a ≤ a0From this we immediately dedue that:If P ,N are �nite sets of arrow types and if a0 is an arrow type, if we de�ne t as
∧∧∧

a∈P a\\\
∨∨∨

a∈N a and if we assume that t 6≃ 0, then:
t ≤ a0 ⇐⇒

∧∧∧

a∈P

a ≤ a0If P ,N1,N2 are �nite sets of arrow types, then:
∧∧∧

a∈P

a 6≤
∨∨∨

a∈N1

a

∧
∧∧∧

a∈P

a 6≤
∨∨∨

a∈N2

a























⇐⇒
∧∧∧

a∈P

a 6≤
∨∨∨

a∈N1∪N2

a6.3 Syntatial meta-theory of the type systemIn this setion and in the following one, we �x a bootstrap model J_K : T → P(D),we write ≤ for the indued subtyping relation and ≃ for the assoiated equivalenerelation, and we study the resulting typing judgment Γ ⊢ e : t.Lemma 6.14 (Strengthening). Let Γ1 and Γ2 be two typing environmentssuh that for any x in the domain of Γ1, we have Γ2(x) ≤ Γ1(x). If Γ1 ⊢ e : t, then
Γ2 ⊢ e : t.Proof: Indution on the derivation of Γ1 ⊢ e : t. We simply introdue aninstane of the subsumption rule below eah instane of the (var) rule.Lemma 6.15 (Admissibility of the intersetion rule). If Γ ⊢ e : t1 and
Γ ⊢ e : t2, then Γ ⊢ e : t1∧∧∧t2. Journal of the ACM, Vol. V, No. N, Month 20YY.



28 · Alain Frish et al.Proof: By indution on the struture of the two typing derivations.Let us �rst onsider the ase when the last rule applied to one of the two deriva-tions is (subsum), say:
. . .

Γ ⊢ e : s1 s1 ≤ t1
Γ ⊢ e : t1

. . .
Γ ⊢ e : t2The indution hypothesis gives Γ ⊢ e : s1∧∧∧t2. But s1∧∧∧t2 ≤ t1∧∧∧t2 beause s1 ≤ t1,and a new appliation of (subsum) gives Γ ⊢ e : t1∧∧∧t2 as expeted.In all the remaining ases, the two derivations end with an instane of the samerule (whih depends on the toplevel onstrutor of e).Rules (const), (var), (rnd): Those rules give only one possible type t for e, and

t∧∧∧t ≃ t.Rule (appl): The situation is as follows:
. . .

Γ ⊢ e1 : t1→→→t2

. . .
Γ ⊢ e2 : t1

Γ ⊢ e1e2 : t2

. . .
Γ ⊢ e1 : t′1→→→t′2

. . .
Γ ⊢ e2 : t′1

Γ ⊢ e1e2 : t′2The indution hypothesis gives Γ ⊢ e1 : (t1→→→t2)∧∧∧(t′1→→→t′2) and Γ ⊢ e2 : t1∧∧∧t′1. Toonlude, it is enough to hek that (t1→→→t2)∧∧∧(t′1→→→t′2) ≤ (t1∧∧∧t′1)→→→(t2∧∧∧t′2), whihan be proved as follows:E((t1→→→t2)∧∧∧(t′1→→→t′2))
= (Jt1K → Jt2K) ∩ (Jt′1K → Jt′2K)
= {f ∈ EfunD | ∀(x, y) ∈ f.(x ∈ Jt1K ⇒ y ∈ Jt2K) ∧ (x ∈ Jt′1K ⇒ y ∈ Jt′2K)}
⊆ {f ∈ EfunD | ∀(x, y) ∈ f.(x ∈ Jt1K ∩ Jt′1K ⇒ y ∈ (Jt2K ∩ Jt′2K)}
= E((t1∧∧∧t′1)→→→(t2∧∧∧t′2))Rule (pair): The situation is as follows:

. . .
Γ ⊢ e1 : t1

. . .
Γ ⊢ e2 : t2

Γ ⊢ (e1, e2) : t1×××t2

. . .
Γ ⊢ e1 : t′1

. . .
Γ ⊢ e2 : t′2

Γ ⊢ (e1, e2) : t′1×××t′2Let t′′1 = t1∧∧∧t′1 and t′′2 = t2∧∧∧t′2. By applying the indution hypothesis twie, weget Γ ⊢ e1 : t′′1 and Γ ⊢ e2 : t′′2 . The rule (pair) gives Γ ⊢ (e1, e2) : t′′1×××t′′2 . Toonlude, it is enough to see that t′′1×××t′′2 ≃ (t1×××t2)∧∧∧(t′1×××t′2). Indeed:E(t′′1×××t′′2 ) = (Jt1K ∩ Jt′1K) × (Jt2K ∩ Jt′2K) = Jt1∧∧∧t2K ∩ Jt′1∧∧∧t′2K = E((t1×××t2)∧∧∧(t′1×××t′2))Rule (case): Let us onsider this situation:
. . .

Γ ⊢ e : t0

. . .
(x : ti), Γ ⊢ ei : s

Γ ⊢ (x = e ∈ t ? e1|e2) : s

. . .
Γ ⊢ e : t′0

. . .
(x : t′i), Γ ⊢ ei : s′

Γ ⊢ (x = e ∈ t ? e1|e2) : s′with t1 = t0∧∧∧t, t2 = t0\\\t, t′1 = t′0∧∧∧t, t′2 = t′0\\\t. The indution hypothesis gives:
Γ ⊢ e : t′′0 with t′′0 = t0∧∧∧t′0. Let us de�ne t′′1 = t′′0∧∧∧t and t′′2 = t′′0\\\t. Let i ∈ {1, 2}.We have t′′i ≤ ti and thus, aording to Lemma 6.14, (x : t′′i ), Γ ⊢ ei : s. Similarly,we get (x : t′′i ), Γ ⊢ ei : s′, and thus, applying again the indution hypothesis
(x : t′′i ), Γ ⊢ ei : s′′ where s′′ = s∧∧∧s′. Then, with the (case) rule, we establish
Γ ⊢ (x = e ∈ t ? e1|e2) : s′′ as expeted.Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 29The speial ases (where ti ≃ 0 or t′i ≃ 0) are similar.Rule (abstr): Let us onsider two appliations of the rule (abstr) to the sameabstration µf(t1→→→s1; . . . ; tn→→→sn).λx.e with the following types:
t =

∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j)

t′ =
∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=m+1..m′

¬¬¬(t′j→→→s′j)where t 6≃ 0 and t′ 6≃ 0. We de�ne:
t′′ =

∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m′

¬¬¬(t′j→→→s′j)We have t′′ ≃ t∧∧∧t′. We only need to verify that some instane of the rule (abstr)allows us to dedue the type t′′ for the abstration. For i = 1..n, we have,by hypothesis (f : t), (x : ti), Γ ⊢ e : si, and thus, aording to Lemma 6.14,
(f : t′′), (x : ti), Γ ⊢ e : si. Then, we hek that t′′ 6≃ 0, whih results immediatelyfrom Lemma 6.13. In this ase, we have not used the indution hypothesis.Corollary 6.16. Let Γ be a typing environment and e an expression whih iswell-typed under Γ. Then the set {t ∈ T | (Γ ⊢ e : t)∨ (Γ ⊢ e : ¬¬¬t)} ontains 0 andis losed under ∨∨∨ and ¬¬¬ (and thus ∧∧∧).Proof: Let E be the set introdued in the statement. It is learly losed under
¬¬¬ and invariant under the equivalene ≃. We have Γ ⊢ e : 1 = ¬¬¬0 beauseof the subsumption rule, and thus 0 ∈ E. What remains is to prove that E islosed under ∨∨∨. So let us take two elements t1 and t2 in E. If Γ 6⊢ e : t1∨∨∨t2,then beause of (subsum), we get Γ 6⊢ e : t1 and Γ 6⊢ e : t2. Beause t1 and
t2 are in E, we thus have Γ ⊢ e : ¬¬¬t1 and Γ ⊢ e : ¬¬¬t2. Lemma 6.15 thengives Γ ⊢ e : ¬¬¬t1∧∧∧¬¬¬t2. And ¬¬¬t1∧∧∧¬¬¬t2 ≃ ¬¬¬(t1∨∨∨t2). We have thus proved that
Γ ⊢ e : t1∨∨∨t2 or Γ ⊢ e : ¬¬¬(t1∨∨∨t2).Lemma 6.17 (Substitution). Let e, e1, . . . , en be expressions, x1, . . . , xn dis-tint variables, t, t1, . . . , tn types, and Γ a typing environment. Then:

{

(x1 : t1), . . . , (xn : tn), Γ ⊢ e : t
∀i = 1..n. Γ ⊢ ei : ti

⇒ Γ ⊢ e[x1 := e1; . . . ; xn := en] : tProof: By indution on the typing derivation for (x1 : t1), . . . , (xn : tn), Γ ⊢ e : t.We simply �plug� a opy of the derivation for Γ ⊢ ei : ti wherever the rule (var)is used for variable xi.6.4 Interpreting types as sets of valuesThe syntatial properties obtained in the previous setion are used here to provesome properties about the interpretation of types as sets of values, as de�ned inSetion 5.2: JtK
V

= {v | ⊢ v : t} Journal of the ACM, Vol. V, No. N, Month 20YY.



30 · Alain Frish et al.Lemma 6.18. If t ≤ s, then JtK
V

⊆ JsK
V
. In partiular, if t ≃ s, then JtK

V
=

JsK
V
.Proof: Consequene of the subsumption rule.Lemma 6.19. J0K

V
= ∅.Proof: We prove that (⊢ v : t) ⇒ t 6≃ 0 by indution on the typing deriva-tion. There are four ases to onsider (one per value onstrutor, one for thesubsumption rule). All of them are trivial.Lemma 6.20. Jt1∧∧∧t2KV

= Jt1KV
∩ Jt2KV

.Proof: Lemma 6.18 gives Jt1∧∧∧t2KV
⊆ JtiKV

for i ∈ {1, 2}, and thus Jt1∧∧∧t2KV
⊆

Jt1KV
∩ Jt2KV

. Lemma 6.15 gives the opposite inlusion.Lemma 6.21 (Inversion).
Jt1×××t2KV

= {(v1, v2) | ⊢ v1 : t1,⊢ v2 : t2}
JbK

V
= {c | bc ≤ b}

Jt→→→sK
V

= {(µf(t1→→→s1; . . . ; tn→→→sn).λx.e) ∈ V . |
∧∧∧

i=1..n

ti→→→si ≤ t→→→s}Moreover, if v is a value and a is an atom of a di�erent kind, then ⊢ v : ¬¬¬a.Proof: For the three equalities, the ⊇ inlusion is straightforward.To prove the three opposite inlusions, let us start with a general remark. Aderivation for ⊢ v : t an always be desribed as an instane of the rule orre-sponding to the kind of v (rule (const) for onstants, (pair) for pairs, and (abstr)for abstrations), followed by zero or more instane of (subsum). That is, wean always �nd another type t′ ≤ t suh that ⊢ v : t′ is obtained by a diretappliation of the typing rule orresponding to v. If t is an atom a, then v isneessarily of the same kind as a. Indeed, if v is a pair, then t′ is a produt type;if v is a onstant, t′ is a basi type; if v is an abstration, t′ is an intersetion ofone or more arrow types (and maybe of zero or more negation of arrow types).In all ases, t′ ∩a ≃ 0 if a and v do not have the same kind, but sine t′ ≤ a, thismeans that t′ ≃ 0, whih is impossible by Lemma 6.19. We also have proved the�nal remark in the statement of the Lemma (beause if a and v does not havethe same kind, then t′ ≤ ¬¬¬a, and thus ⊢ v : ¬¬¬a).Case ⊢ v : t1×××t2:. The value is neessarily a pair (v1, v2) suh that ⊢ v1 : t′1,
⊢ v2 : t′2, and t′1×××t′2 ≤ t1×××t2. But t′1 6≃ 0 and t′2 6≃ 0 beause of Lemma 6.19, andthus t′1 ≤ t1 and t′2 ≤ t2. By subsumption, we get ⊢ v1 : t1 and ⊢ v2 : t2.Case ⊢ v : b: The value is neessarily a onstant c suh that bc ≤ b.Case ⊢ v : t→→→s: The value is neessarily an abstration
µf(t1→→→s1; . . . ; tn→→→sn).λx.e. Here, the type t′ has the form:

∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j)Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 31with t′ 6≃ 0 and t′ ≤ t→→→s. We an therefore apply the seond point of Lemma 6.13and dedue:
∧∧∧

i=1..n

(ti→→→si) ≤ t→→→s

Lemma 6.22. J¬¬¬tK
V

= V \JtK
V
.Proof:We have (t∧∧∧¬¬¬t) ≃ 0 and, thus, JtK

V
∩ J¬¬¬tK

V
= Jt∧∧∧¬¬¬tK

V
= J0K

V
= ∅. So itremains to prove that JtK

V
∪ J¬¬¬tK

V
= V , that is:

∀v.∀t. (⊢ v : t) ∨ (⊢ v : ¬¬¬t)We proeed by indution over the pair (v, t). Thanks to Corollary 6.16, we anassume that t is an atom a. Lemma 6.21 gives ⊢ v : ¬¬¬a if a and v do not havethe same kind. Now, we assume they have the same kind.Case v = c: We have ⊢ c : bc. The set E(bc) is a singleton (namely {c}), and thusE(bc) ⊆ E(a) or E(bc) ⊆ E(¬¬¬a), that is: bc ≤ a or bc ≤ ¬¬¬a. By subsumption, weget ⊢ bc : a or ⊢ bc : ¬¬¬a.Case v = (v1, v2), a = t1×××t2: If ⊢ v1 : t1 and ⊢ v2 : t2, we get ⊢ v : a. Otherwise,say 6⊢ v1 : t1, we get ⊢ v1 : ¬¬¬t1 by the indution hypothesis, and ⊢ v2 : 1 alwaysholds, and thus we get ⊢ v : (¬¬¬t1)×××1. We onlude this ase by the observationthat (¬¬¬t1)×××1 ≤ ¬¬¬(t1×××t2).Case v = µf(t1→→→s1; . . . ; tn→→→sn).λx.e, a = t→→→s: It is easy to see that ⊢ v : a if
∧∧∧

i=1..n ti→→→si ≤ a and ⊢ v : ¬¬¬a otherwise.Lemma 6.23. Jt1∨∨∨t2KV
= Jt1KV

∪ Jt2KV
.Proof: Using Lemmas 6.22, 6.20 and 6.18, we get: Jt1∨∨∨t2KV

=
J¬¬¬((¬¬¬t1)∧∧∧(¬¬¬t2))KV

= V \(J¬¬¬t1KV
∩ J¬¬¬t2KV

) = V \(V \Jt1KV
\Jt2KV

) = Jt1KV
∪

Jt2KV
.From Lemmas 6.22, 6.23 and 6.19, we get that J_K

V
is a set-theoreti interpre-tation.To onlude the proof of Theorem 5.4, we need to hek that it is strutural.Clearly V 2 ⊆ V and Lemma 6.21 gives Jt1×××t2KV

= Jt1KV
× Jt2KV

. Also, therelation indued by (v1, v2) ⊲ vi is learly Noetherian.6.5 Closing the loopIn this setion, we detail the proof of Theorem 5.5. We start with a lemma thatshows that for an arbitrary �nite set of arrow types, we an always �nd a well-typed and losed abstration (hene a value) having exatly this set of types in itsinterfae. This fat will be used in the proof of Lemma 6.26.Journal of the ACM, Vol. V, No. N, Month 20YY.



32 · Alain Frish et al.Lemma 6.24. For every non-empty and �nite family of arrow types t1→→→s1, . . . , tn→→→sn,the expression µf(t1→→→s1; . . . ; tn→→→sn).λx.fx is a value.Proof: Diret appliation of the typing rules and from the de�nition of val-ues.Lemma 6.25. In every model, JtK = ∅ ⇐⇒ J1 → tK ⊆ J1 → 0K holds true.Proof: Lemma 6.8 tells us that, in a model, J1 → tK ⊆ J1 → 0K is equivalent to
(J1K ⊆ J0K ∨ JtK ⊆ J0K) ∧ (J1K ⊆ J1K), whih is itself equivalent to JtK = ∅.Lemma 6.26. The set-theoreti interpretation J_K

V
is a model if and only if itindues the same subtyping relation as J_K.Proof: The ⇐ impliation is given by Corollary 6.12. Let us assume that

J_K
V

is a model and prove that JtK
V

= ∅ ⇐⇒ t ≃ 0 for any type t. The
⇐ impliation is given by Lemma 6.19. Let t be a type suh that JtK

V
= ∅.Beause J_K

V
is a model, Lemma 6.25 gives: J1 → tK

V
⊆ J1 → 0K

V
. Now weonsider the expression v = µf(1 → t).λx.fx. Aording to Lemma 6.24, it is avalue. Aording to Lemma 6.21, it is an element of J1 → tK

V
, and thus also of

J1 → 0K
V
, whih means that 1 → t ≤ 1 → 0 (again Lemma 6.21), and �nallythat t ≃ 0 (Lemma 6.25 for the model J_K).Lemma 6.27. If the bootstrap model is well-founded, then J_K

V
is a model.Proof: By de�nition of a well-founded model, there is a strutural set-theoretiinterpretation whih indues the same subtyping relation as the bootstrap model.It is thus also a model. Sine the type system and J_K

V
only depend on this sub-typing relation, we an assume that the bootstrap model is not only well-foundedbut also strutural. We will use the Noetherian relation ⊲ from De�nition 4.5.We need to prove that, for every type t, JtK

V
= ∅ ⇐⇒ t ≃ 0. The ⇐impliation is given by Lemma 6.19 and Lemma 6.18. We atually prove byindution (using the ⊲ relation) that for all d ∈ D, the following property holds:

(∀t ∈ T . d ∈ JtK ⇒ JtK
V

6= ∅).Consider a type t suh that d ∈ JtK. If d = (d1, d2) ∈ D2, then it is in the set
JtK ∩ D2 =

⋃

(P,N)∈N (t)

(

D2 ∩
⋂

a∈P

JaK\
⋃

a∈N

JaK
)We an thus �nd (P, N) ∈ N (t) suh that d ∈ D2 ∩

⋂

a∈P JaK\⋃a∈N JaK. Notethat if a is an atom whih is not a produt type, then D2∩JaK = J1×××1K∩JaK = ∅,beause E(1×××1) ∩ E(a) = ∅. We an thus assume that P ⊆ Aprod, and we have
d ∈

⋂

t1×××t2∈P (Jt1K × Jt2K)\
⋃

t1×××t2∈N (Jt1K × Jt2K). If we write d = (d1, d2), thenJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 33Lemma 6.4 gives some N ′ ⊆ N suh that d1 ∈ Js1K and d2 ∈ Js2K for:














s1 =
∧∧∧

t1×××t2∈P

t1\\\
∨∨∨

t1×××t2∈N ′

t1

s2 =
∧∧∧

t1×××t2∈P

t2\\\
∨∨∨

t1×××t2∈N\N ′

t2The indution hypothesis applied to d1 and d2 gives Js1KV
6= ∅ and Js2KV

6= ∅,and thus Js1×××s2KV
6= ∅. To onlude this ase, we observe that s1×××s2 ≤ t, usingagain Lemma 6.4.Now, we assume that d 6∈ D2 = J1×××1K. We thus have d ∈ Jt\\\1×××1K, whihimplies that t\\\1×××1 6≃ 0. As a onsequene E(t\\\1×××1) 6= ∅, and thus E(t) ∩

(ED\EprodD) 6= ∅. We are in at least one of the two ases:E(t) ∩ C 6= ∅: let c ∈ E(t) ∩ C . We have E(bc) = {c} ⊆ E(t), and thus bc ≤ t.We onlude that ⊢ c : t.E(t) ∩ EfunD 6= ∅: we have:E(t) ∩ EfunD =
⋃

(P,N)∈N (t) s.t. P⊆Afun(EfunD ∩
⋂

a∈P

E(a)\
⋃

a∈N

E(a)

)This set is not empty. We an thus �nd an element (P, N) in N (t) suhthat P = {t1→→→s1, . . . , tn→→→sn}, N ∩ Afun = {t′1→→→s′1, . . . , t
′
m→→→s′m}, and t′ =

∧∧∧

i=1..n ti→→→si\\\
∨∨∨

j=1..m t′j→→→s′j 6≃ 0. We have t′ ≤ t and the value v =
µf(t1→→→s1; . . . ; tn→→→sn).λx.fx has type t′ (diret appliation the typing rule forabstrations). By subsumption, we get ⊢ v : t.Lemmas 6.27 and 6.26 entail Theorem 5.5.6.6 Type soundnessHere is the proof of the subjet redution property, Theorem 5.1 in Setion 5.Proof: If (Γ ⊢ e : t), then we prove by indution on the derivation for Γ ⊢ e : tthat ∀e′.(e ; e′) ⇒ (Γ ⊢ e′ : t). We onsider the last rule used in the derivationof Γ ⊢ e : t.Rule (subsum): we have Γ ⊢ e : s ≤ t and e ; e′. The indution hypothesisgives Γ ⊢ e′ : s, and by subsumption we get Γ ⊢ e′ : t.Rules (const),(var): the expression e is a onstant or a variable. It annot beredued.Rule (proj): we have e = πi(e0), t = ti, Γ ⊢ e0 : t1×××t2. If e′ is obtained byreduing e0, that is, e0 ; e′0 and e′ = πi(e

′
0), we get, by the indution hypothesis:

Γ ⊢ e′0 : t1×××t2 and thus Γ ⊢ e′ : ti. If e′ is obtained by reduing the toplevel πi in
e, then neessarily e0 is a value (v1, v2) (and thus, by Lemma 6.21: Γ ⊢ vi : ti),and e′ = vi. We get Γ ⊢ e′ : ti.Rule (rnd): we have e = rnd(t). The redution rule for this expression gives
⊢ e′ : t, whih implies Γ ⊢ e′ : t by Lemma 6.14.Journal of the ACM, Vol. V, No. N, Month 20YY.



34 · Alain Frish et al.Rule (pair): we have e = (e1, e2), t = t1×××t2, and Γ ⊢ ei : ti for i = 1..2. Theonly possible way to redue e is to redue one of the ei, say e′ = (e′1, e2) where
e1 ; e′1. The indution hypothesis gives Γ ⊢ e′1 : t1, and we get Γ ⊢ e′ : t1×××t2.Rule (appl): we have e = e1e2, Γ ⊢ e1 : s → t and Γ ⊢ e2 : s. If e′ is obtainedby reduing e1 or e2, we proeed as in the ase for the (pair) rule. Otherwise,we have neessarily e1 = µf(s1→→→t1; . . . ; sn→→→tn).λx.e0, e′ = e0[f := e1; x := e2]and e2 is a value v2. We have ∧∧∧i∈I si→→→ti ≤ s → t, where I = {1, . . . , n}(Lemma 6.21). Aording to Lemma 6.8, this means that s ≤

∨∨∨

i∈I si and thatfor any non-empty I ′ ⊆ I suh that s 6≤
∨∨∨

i∈I\I′ si, we have ∧∧∧i∈I′ ti ≤ t. Wetake I ′ = {i ∈ I | ⊢ v2 : si}. This set is not empty. Indeed, sine ⊢ v2 : sand s ≤
∨∨∨

i∈I si, we have at least one i suh that ⊢ v2 : si (Lemma 6.23).Now, we laim that s 6≤
∨∨∨

i∈I\I′ si. Otherwise, we would �nd some i 6∈ I ′ suhthat ⊢ v2 : si, whih ontradits the de�nition for I ′. As a onsequene, weget ∧∧∧i∈I′ ti ≤ t. We laim that Γ ⊢ e′ :
∧∧∧

i∈I′ ti (whih by subsumption yields
Γ ⊢ e′ : t i.e. the result). To prove our laim we show that for every i ∈ I ′ we have
Γ ⊢ e′ : ti, whih thanks to Lemma 6.15 yields our laim. So, let us onsider any
i ∈ I ′, that is, any i suh that ⊢ v2 : si. The abstration e1 is well-typed under
Γ therefore in its derivation there is an instane of the (abstr) rule (possiblyfollowed by several appliations of the subsumption rule) whih infers for e1 atype t′ under Γ. One of the premises of this rule is (f : t′), (x : ti), Γ ⊢ e0 : ti.We also have Γ ⊢ e1 : t′ and Γ ⊢ v2 : si (Lemma 6.14), and thus Γ ⊢ e′ : ti(Lemma 6.17) as expeted.Rule (abstr): the expression e is an abstration, and the redution an only ourwithin its body. We proeed as in the ase for the (pair) rule.Rule (case): we have e = (x = e0 ∈ s ? e1 | e2). If the redution ours withinone of the sub-expressions e0,e1,e2, we proeed as in the ase for the (pair)rule. Otherwise, the expression e0 is neessarily a value v, and we have either
(⊢ v : s) ∧ (e′ = e1[x := v]) or (⊢ v : ¬¬¬s) ∧ (e′ = e2[x := v]). Let us onsider forinstane the �rst ase. The typing rule gives: Γ ⊢ v : s0. Thanks to Lemma 6.15,we get Γ ⊢ v : s0∧∧∧s. Beause of Lemma 6.19, we know that s0∧∧∧s 6≃ 0, that is
s0 6≤ ¬¬¬s. So the typing rule (case) under onsideration has a premise for e1,namely (x : s0∧∧∧s), Γ ⊢ e1 : t. Lemma 6.17 gives Γ ⊢ e′ : t as expeted.And here is the proof of the progress property, Theorem 5.2 in Setion 5. Notethat this proof is relatively standard.Proof: We write e 6; if e annot be redued (6 ∃e′.e ; e′). Suppose that ⊢ e : t;we prove on indution on the derivation of ⊢ e : t that either e is a value or itan be redued. We onsider the last rule used in this derivation.Rule (subsum): straightforward appliation of the indution hypothesis.Rule (var): a variable annot be well-typed in an empty environment. This aseis thus impossible.Rule (const): the expression e is a onstant. It is thus a value.Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 35Rule (abstr): the expression e is an abstration whih is well-typed under theempty environment. It is thus a value.Rule (proj): we have e = πi(e0), t = ti, ⊢ e0 : t1×××t2. If e0 an be redued to,say, e′0, then e ; πi(e
′
0). Otherwise, if e0 6;, then by the indution hypothesis

e0 is a value. By Lemma 6.21, we get e0 = (v1, v2), and thus e ; vi.Rule (rnd): we have e = rnd(t) and thus e ; e′ for any e′ of type t (for instane,we an take for e′ an expression of type 0, whih exists).Rule (pair): we have e = (e1, e2), t = t1×××t2, and ⊢ ei : ti for i = 1..2. If one ofthe ei an be redued, then e an also be redued. Otherwise, by the indutionhypothesis, we obtain that both e1 and e2 are values, and so is e.Rule (appl): we have e = e1e2, ⊢ e1 : s → t and ⊢ e2 : s. If one of the
ei an be redued, then e an also be redued. Otherwise, by the indutionhypothesis, we obtain that both e1 and e2 are values. By Lemma 6.21, we get
e1 = µf(s1→→→t1; . . . ; sn→→→tn).λx.e0. Then e ; e0[f := e1; x := e2].Rule (case): we have e = (x = e0 ∈ s ? e1 | e2). If e0 an be redued, then
e an also be redued. Otherwise, by the indution hypothesis, we obtain that
e0 is a value v. Beause of Lemma 6.23, we have ⊢ v : s or ⊢ v : ¬¬¬s, and thus
e ; e1[x := v] or e ; e2[x := v].6.7 Constrution of modelsA naive idea to build a model would be to look for an interpretation domain D suhthat D = ED. Of ourse suh a set annot exist, sine the ardinality of EfunD, andthus of ED, is stritly larger than the ardinality of D. This ardinality probleman be avoided by onsidering only �nite graphs to interpret funtions. As we willshow below, this does not a�et the subtyping relation.For any set D, we write EfD = C + D2 + Pf (D × DΩ) where Pf denotes therestrition of the powerset to �nite subsets.Definition 6.28. A set-theoreti interpretation J_K : T → P(D) is �nitely extensionalif:(1 ) D = EfD(2 ) JaK = E(a) ∩ D for any atom a.Lemma 6.29. If J_K is a �nitely extensional set-theoreti interpretation, then

JtK = E(t) ∩ D for any type t, and JτK = E(τ) ∩ D for any normal formal τ .Proof: Indution on t.The next lemma shows that taking �nite sets as extensional models for fun-tions does not hange the subtyping relation between arrow types (ompare it withLemma 6.7). Journal of the ACM, Vol. V, No. N, Month 20YY.



36 · Alain Frish et al.Lemma 6.30. Let (Xi)i∈P and (Xi)i∈N be two �nite families of subsets of D.Then:
⋂

i∈P

Pf (Xi) ⊆
⋃

i∈N

Pf (Xi) ⇐⇒ ∃io ∈ N.
⋂

i∈P

Xi ⊆ Xi0Proof: The ⇐ impliation is straightforward. Let us prove ⇒. We assume thatany �nite subset of X =
⋂

i∈P Xi is a subset of one of the Xi0 with i0 ∈ N .We need to prove that the same holds for X itself. Otherwise, we ould �nd foreah i0 ∈ N an element xi0 ∈ X\Xi0 and we would obtain a ontradition byonsidering the �nite set {xi0 | i0 ∈ N}.Lemma 6.31. Let P, N be two �nite sets of arrow types and J_K an arbitraryset-theoreti interpretation. Then:
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a) ⇐⇒ Pf (D × DΩ) ∩
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a)(By onvention ⋂a∈∅ E(a) = P(D × DΩ).)Proof: Consequene of Lemmas 6.7, 6.30, and 6.6.It is, then, not surprising that �nitely extensional interpretations are models.Lemma 6.32. Every �nitely extensional interpretation is a model.Proof: Sine JτK = E(τ) ∩ D, we need to prove thatE(τ) = ∅ ⇐⇒ E(τ) ∩ D = ∅for any normal form τ . We write:E(τ) =
⋃

u∈U

⋃

(P,N)∈τ

(EuD ∩
⋂

a∈P

E(a)\
⋃

a∈N

E(a)

)So we need to prove that for any u ∈ U and (P, N) two �nite sets of atoms, wehave: EuD ∩
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a) ⇐⇒ D ∩ EuD ∩
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a)If u 6= fun, then EuD ⊆ D, and the equivalene is thus trivial. The ase u = funomes from Lemma 6.31.6.8 A universal modelIn this setion, we de�ne a strutural and �nitely extensional model and then showthat it is universal and, in the next setion, that the subtyping relation indued bythis model is deidable.We need to build a set D0 suh that D0 = EfD0, that is, a solution to theequation D0 = C + D0 × D0 + Pf (D0 ×D0
Ω). We will onsider the initial solutionJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 37to this equation. Conretely, we de�ne D0 as the set of �nite terms generated bythe prodution d of the following grammar (c ranges over elements of C ):
d ::= c | (d, d) | {(d, d′), . . . , (d, d′)}
d′ ::= d | ΩNow, we need to de�ne a set-theoreti interpretation J_K0 : T → P(D0) suhthat JtK0 = E(a)0 ∩ D0. Beause of the indutive struture of elements of D0, thisequation atually de�nes the funtion J_K0. To see this, we will de�ne a binaryprediate (d : t) where d ∈ D0 and t ∈ T . The truth value of (d : t) is de�ned byindution on the pair (d, t) ordered lexiographially, using the indutive struturefor elements of D0, and the indution priniple we mentioned earlier for types. Hereis the de�nition:

(c : b) = c ∈ BJbK
((d1, d2) : t1×××t2) = (d1 : t1) ∧ (d2 : t2)
({(d1, d

′
1), . . . , (dn, d′n)} : t1→→→t2) = ∀i. (di : t1) ⇒ (d′i : t2)

(d : t1∨∨∨t2) = (d : t1) ∨ (d : t2)
(d : ¬¬¬t) = ¬(d : t)
(d : t) = false otherwiseNow we de�ne JtK0 = {d ∈ D0 | (d : t)}. It is straightforward from this de�nitionto see that J_K0 is a set-theoreti interpretation and that it is strutural (and thuswell-founded). It is also lear that it is �nitely extensional. It is thus a model. Itremains to prove that this model is universal. This is a diret onsequene of thenext lemma.Lemma 6.33. If S 0 = {τ | JτK0 = ∅} and S is a simulation, then S ⊆ S 0.Proof: Let S be a simulation. We need to prove that ∀τ ∈ S . JτK0

= ∅, thatis:
∀d ∈ D0.∀τ ∈ S . d 6∈ JτK0We will prove this property by indution on d ∈ D0. Let's take d ∈ D0 and

τ ∈ S . Sine S is a simulation, we also have τ ∈ ES , that is:
∀u ∈ U.∀(P, N) ∈ t. (P ⊆ Au ⇒ CP,N∩Au

u ) (6)where the onditions CP,N
u are as in De�nition 6.9.We need to prove that d 6∈ JτK0. The set JτK0 is equal to:

⋃

(P,N)∈τ

⋂

a∈P

JaK0\
⋃

a∈N

JaK0We prove that d does not belong to any of the terms of this union. Let (P, N) ∈
τ and u be the kind of d (as for values, it is straightforward to assoiate aunique kind to eah element of D0). If a ∈ A \Au, then learly d 6∈ JaK0. As aonsequene, if P 6⊆ Au, then d 6∈

⋂

a∈P JaK0\⋃a∈N JaK0. We now assume that
P ⊆ Au. We an apply (6). We obtain that CP,N∩Au

u holds. It remains to provethat:
d 6∈

⋂

a∈P

JaK0\
⋃

a∈N∩Au

JaK0Journal of the ACM, Vol. V, No. N, Month 20YY.



38 · Alain Frish et al.
u = basi, d = c. The ondition CP,N∩Au

u is:
C ∩

⋂

b∈P

BJbK ⊆
⋃

b∈N

BJbKAs a onsequene, we get:
d 6∈

⋂

b∈P

BJbK\
⋃

b∈N

BJbK =
⋂

a∈P

JaK0\
⋃

a∈N∩Abasi JaK0

u = prod, d = (d1, d2). The ondition CP,N∩Au

u is:
∀N ′ ⊆ N ∩ Aprod.



































N

(

∧∧∧

t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

)

∈ S

∨

N





∧∧∧

t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2



 ∈ SFor eah N ′, we apply the indution hypothesis to d1 and to d2. We get:
d1 6∈

t
∧∧∧

t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

|0

∨ d2 6∈

u
v ∧∧∧

t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2

}
~

0That is:
d 6∈

(

⋂

t1×××t2∈P

Jt1K0\
⋃

t1×××t2∈N ′

Jt1K0
)

×





⋂

t1×××t2∈P

Jt2K0\
⋃

t1×××t2∈N\N ′

Jt2K0


Aording to Lemma 6.4 and to Jt1K0 × Jt2K0 = Jt1×××t2K0, we thus get:
d 6∈

⋂

a∈P

JaK0\
⋃

a∈N∩Aprod JaK0

u = fun, d = {(d1, d
′
1), . . . , (dn, d′n)}. The ondition CP,N∩Au

u says that thereexists t0→→→s0 ∈ N suh that, for all P ′ ⊆ P :
N

(

t0∧∧∧
∧∧∧

t→→→s∈P ′

¬¬¬t

)

∈ S ∨















P 6= P ′

N



(¬¬¬s0)∧∧∧
∧∧∧

t→→→s∈P\P ′

s



 ∈ SApplying the indution hypothesis to the di and d′i (note that if d′i = Ω, then
d′i 6∈ JτK0 is trivial for all τ):

di 6∈

t
t0∧∧∧

∧∧∧

t→→→s∈P ′

¬¬¬t

|0

∨















P 6= P ′

d′i 6∈

u
v(¬¬¬s0)∧∧∧

∧∧∧

t→→→s∈P\P ′

s

}
~

0Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 39Let us �rst assume that ∀i. (di ∈ Jt0K0 ⇒ d′i ∈ Js0K0). Then we have d ∈

Jt0→→→s0K0. Otherwise, let us onsider i suh that di ∈ Jt0K0 and d′i 6∈ Js0K0. Theformula above gives for any P ′ ⊆ P :
(

di ∈
⋃

t→→→s∈P ′

JtK0
)

∨



P ′ 6= P ∧ d′i ∈ {Ω} ∪
⋃

t→→→s∈P\P ′

J¬¬¬sK0


Let's take P ′ = {t→→→s ∈ P | di 6∈ JtK0}. We have di 6∈
⋃

t→→→s∈P ′ JtK0, and thus
P ′ 6= P and d′i ∈ {Ω} ∪

⋃

t→→→s∈P\P ′ J¬¬¬sK0. We an thus �nd t→→→s ∈ P\P ′ suhthat d′i 6∈ JsK0, and beause t→→→s 6∈ P ′, we also have di ∈ JtK0. We have thusproved that d 6∈ Jt→→→sK0 for some t→→→s ∈ P .In both ases, we get:
d 6∈

⋂

a∈P

JaK0\
⋃

a∈N∩Afun JaK0

6.9 Deidability of subtyping for the universal modelWe will now fous on Theorem 5.8. Let ≤0 denote the subtyping relation in-dued by the universal model J_K0. We have t1 ≤0 t2 ⇐⇒ Jt1\\\t2K0 = ∅ ⇐⇒

JN (t1\\\t2)K0 = ∅. Therefore we need to show how to deide, for a given normalform τ0, whether Jτ0K0 = ∅ or not. Thanks to the Lemma above, we get: Jτ0K0 = ∅if and only if there exists a simulation S suh that τ0 ∈ S .Atually, we an restrit our attention to a �nite number of normal forms. Indeed,let us onsider the set A of all the atoms that our in τ0 (inluding atoms nested inother atoms). Thanks to the regularity of types, this set A is �nite. Write N (A)for the set of normal forms built only on top of these atoms, that is: N (A) =
P(P(A)×P(A)). This set is also �nite, and looking at De�nition 6.9, we see thatan intersetion of a simulation and N (A) is again a simulation. As a onsequene,we get: Jτ0K0 = ∅ if and only if there exists a simulation S ⊆ N (A) suh that
τ0 ∈ S . A naive algorithm an simply enumerate all the subset of N (A) whihontain τ0 and by applying De�nition 6.9 hek whether one of them is a simulation.Of ourse, there exist better algorithms. For instane, we an interpret thede�nition of a simulation as saturation rules: the algorithm starts from the set
{τ0} and tries to saturate it until it obtains a simulation. Beause of the disjun-tions in the de�nition of a simulation, this algorithm needs to explore di�erentbranhes. A branh annot be in�nite beause the algorithm will only onsiderthe normal forms in N (A) whih is a �nite set. There exists a simulation whihontains τ0 if and only if one of the branhes sueeds in reahing a simulation. ThePh.D. thesis [Frish 2004℄ desribes two algorithms that improve over this simplesaturation-based strategy. These algorithms are those implemented in the CDueompiler [CDUCE ℄ and, as suh, they are daily tested on large and omplex typessuh as the XHTML DTD. Journal of the ACM, Vol. V, No. N, Month 20YY.



40 · Alain Frish et al.6.10 Non-universal modelsThe interpretation domain D of a �nitely extensional set-theoreti interpretationmust be a solution to the equation D = EfD. In the previous setion, we onsideredthe initial solution to this equation and we obtained a universal model. In thissetion, we will build non-universal models by onsidering non-initial solutions tothe equation D = EfD.A �rst attempt ould be to onsider in�nite (or maybe regular) terms generatedby the following produtions:
d ::= c | (d, d) | {(d, d′), . . . , (d, d′)}
d′ ::= d | ΩBut it is then impossible to build a �nitely extensional interpretation on this domain

D∞. Indeed, if J_K is suh an interpretation, we onsider the element d ∈ D∞suh that d = (d, d) and the type t suh that t = (¬¬¬t)×××(¬¬¬t). Sine d ∈ D∞and JtK = E(t) ∩ D∞ = (D∞\JtK) × (D∞\JtK), we have: d ∈ JtK ⇐⇒ (d, d) ∈
(D∞\JtK) × (D∞\JtK) ⇐⇒ d 6∈ JtK. Contradition.So, we will build domains whih are intermediate between D0 and D∞. We needto introdue some new notions.For an arbitrary set X , we de�ne D[X] as the set of �nite terms generated by theprodution d below:

d ::= x | c | (d, d) | {(d, d′), . . . , (d, d′)}
d′ ::= d | Ωwhere x ranges over elements of X . In other words, D[X] is the initial solution Dto the equation D = X + C + D2 + Pf (D×DΩ). We de�ne the prediate ∆ ⊢ d : tfor d ∈ D[X], t ∈ T , ∆ ∈ P(T )X by indution on the struture of d:

(∆ ⊢ d : t1∨∨∨t2) = (∆ ⊢ d : t1) ∨ (∆ ⊢ d : t2)
(∆ ⊢ d : ¬¬¬t) = ¬(∆ ⊢ d : t)
(∆ ⊢ c : b) = c ∈ BJbK
(∆ ⊢ (d1, d2) : t1×××t2) = (∆ ⊢ d1 : t1) ∧ (∆ ⊢ d2 : t2)
(∆ ⊢ {(d1, d

′
1), . . . , (dn, d′n)} : t1→→→t2) = ∀i. (∆ ⊢ di : t1) ⇒ (∆ ⊢ d′i : t2)

(∆ ⊢ x : a) = a ∈ ∆(x)
(∆ ⊢ d : t) = false otherwiseA ongruene onD[X] is an equivalene relation≡ suh that (d1

1 ≡ d2
1∧d1

2 ≡ d2
2) ⇒

(d1
1, d

1
2) ≡ (d2

1, d
2
2) and (∀i.d1

i ≡ d2
i ∧ d

′1
i ≡ d

′2
i ) ⇒ {(d1

1, d
′1
1 ), . . .} ≡ {(d2

1, d
′2
1 ), . . .}.If for all x, we hoose an element dx ∈ Ef(D[X]) = D[X]\X and if we onsiderthe smallest ongruene ≡ suh that ∀x ∈ X.x ≡ dx, then the quotient D

[X]
≡ =

D[X]/ ≡ is suh that Ef (D
[X]
≡ ) = D

[X]
≡ (modulo an impliit bijetion). Note thatthis quotient looks a lot like D0, exept that there are some non well-foundedelements. Let's hoose some ∆ ∈ P(T )X . We require the prediate (∆ ⊢ d : t) tobe invariant under ≡, that is: d1 ≡ d2 ⇒ ((∆ ⊢ d1 : t) ⇐⇒ (∆ ⊢ d2 : t)). This isthe ase if and only if ∀x.(∆ ⊢ x : t) ⇐⇒ (∆ ⊢ dx : t), that is, if and only if:

(∗) ∀x ∈ X. ∆(x) = {t | ∆ ⊢ dx : t}When this property holds, we an de�ne J_K∆ : T → P(D
[X]
≡ ) by JtK∆ =Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 41
{[d]≡ | (∆ ⊢ d : t)}, where [d]≡ denotes the equivalene lass of d modulo ≡.This de�nes a �nitely extensional set-theoreti interpretation (and thus a model).Of ourse, the di�ulty is now to hoose X , the dx and ∆ suh that (∗) holds.Let us onsider the ase where X = Z, and eah dk, k ∈ Z is de�ned using only
dk−1 in a uniform way. Formally, we onsider a �xed element δ ∈ D{•} suh that
δ 6= • and we de�ne dk = δ[• := k − 1] (that is, the element of DZ obtained bysubstituting • by k − 1 in δ). If ∆ ∈ P(T )Z, then ∆ ⊢ dk : t is equivalent to
∆ ⊢ δ[• := k − 1] : t, and an indution on the struture of δ shows that this isequivalent to (• 7→ ∆k−1) ⊢ δ : t (from now on, we write ∆k instead of ∆(k)). Ifwe de�ne the operator F : P(T ) → P(T ) by F (T ) = {t | (• 7→ T ) ⊢ δ : t}, thenthe ondition (∗) an be rewritten as:

∀k ∈ Z. ∆k = F (∆k−1)Building suh a sequene is not straightforward. We will rely on a tehniallemma.Lemma 6.34. Let A be a �nite set, f : A → A, and a0 ∈ A. There exists aunique periodi sequene (ak)k∈Z ∈ AZ suh that:
∃n0 ∈ N.∀k ≥ n0.ak = fk(a0)(where fn denotes the n-th iterated omposition of f with itself). This sequene issuh that:

∀k. ak+1 = f(ak)Proof: We onsider the sequene (an)n∈N de�ned by an = fn(a0). Sine Ais �nite, this sequene annot be injetive. We an �nd n0 < n1 suh that
an0 = an1 . A reurrene gives an = an+(n1−n0) for any n ≥ n0: the sequene
(an)n∈N is ultimately periodi. As a onsequene, there exists a unique sequene
(ak)k∈Z whih oinides ultimately with (an)n∈N.Clearly, the property ak+1 = f(ak) holds for k large enough, and beause (ak)k∈Zis periodi, it holds for any k.Theorem 6.35. Let T 0 be a set of types. There exists a sequene (∆k)k∈Z suhthat:�∀k ∈ Z.∆k+1 = F (∆k)�For any type t, the sequene of the truth values of (t ∈ ∆k)k∈Z is periodi and
∃n0 ∈ N.∀k ≥ n0.(t ∈ ∆k ⇐⇒ t ∈ F k(T 0))Proof: Sine the set P(T ) is not �nite, we annot use the lemma diretly. Theregularity of types will ome to the resue. We de�ne a one as a �nite set of typeswhih is losed under subterms deomposition (that is, if the set ontains a type,it also ontains all its subterms). Any type belongs to some one beause a typeis a regular term. For a one C, we an de�ne the funtion FC : P(C) → P(C)by FC(T ) = F (T )∩C. We an apply the lemma to this funtion, beause P(C)is �nite. We write (T C

k )k∈Z for the sequene we obtain. Now, we observe on thede�nition of the ⊢ prediate that for t ∈ C, the assertion (• 7→ T ) ⊢ δ : t holdsJournal of the ACM, Vol. V, No. N, Month 20YY.



42 · Alain Frish et al.if and only if (• 7→ (T ∩ C)) ⊢ δ : t holds. This gives immediately the followingproperty:
∀T ⊆ T . C ∩ F (T ∩ C) = C ∩ F (T )From that, a reurrene gives Fn

C(T 0) = Fn(T 0) ∩ C. So, for t ∈ C, we have
t ∈ T C

k ⇐⇒ t ∈ F k(T0) when k is large enough. Sine the sequene (t ∈ T C
k )k∈Zis periodi, it does not depend on the hoie of the one C whih ontains t.We an thus de�ne ∆k as the set of types t suh that t ∈ T C

k for some/anyone C that ontains t. We have T C
k = ∆k ∩ C. It remains to hek that

∆k+1 = F (∆k) for all k. Let t be a type and C a one whih ontains t.We have t ∈ ∆k+1 ⇐⇒ t ∈ T C
k+1 and aording to the lemma, we have

T C
k+1 = F (T C

k ) ∩ C = F (∆k) ∩ C. So: t ∈ ∆k+1 ⇐⇒ t ∈ F (∆k). Sinethis property holds for an arbitrary t, we get ∆k+1 = F (∆k) as expeted.We will give two examples of onstrutions based on this theorem. First, we willbuild a model whih is not well-founded. In a well-founded model, the reursivetype t0 = t0×××t0 is empty. We will build a model where this type is not empty.We take δ = (•, •) and we build (∆k)k∈Z as given by the theorem. We thus get a�nitely extensional set-theoreti interpretation J_K∆ : T → P(DZ
≡). For any setof types T , we have t0 ∈ F (T ) ⇐⇒ (• 7→ T ) ⊢ δ : t0 ⇐⇒ (• 7→ T ) ⊢ (•, •) :

t0×××t0 ⇐⇒ (• 7→ T ) ⊢ • : t0 ⇐⇒ t0 ∈ T . So if we hoose T 0 suh that t0 ∈ T 0,we have t0 ∈ ∆k for all k, from whih we onlude that Jt0K∆ ontains the [k]≡ for
k ∈ Z. In partiular, it is not empty. To better understand our onstrution, wean onsider the type t1 = (¬¬¬t1)×××(¬¬¬t1). We �nd that t1 ∈ F (T ) ⇐⇒ t1 6∈ T andwe dedue that Jt1K∆ ontains the [k]≡ for all even k ∈ Z (if t1 ∈ T 0) or for all
k ∈ Z (if t1 6∈ T 0). For more omplex reursive types, we might see other periodsthat 2.Now, we will build a strutural (and thus well-founded) model whih is notuniversal. We onsider the reursive type t0 = (0→→→0)\\\(t0→→→0). If J_K is a �nitelyextensional set-theoreti interpretation, a simple omputation gives:

Jt0K = {{(di, d
′
i) | ∃i. di ∈ Jt0K}}In partiular, this set is empty for the universal model built in the previous setion(beause its elements are �nite trees). We take δ = {(•, Ω)} and we proeed asabove, with the following omputation: t0 ∈ F (T ) ⇐⇒ (• 7→ T ) ⊢ δ : t0 ⇐⇒

(• 7→ T ) ⊢ {(•, Ω)} : (0→→→0)\\\(t0×××0) ⇐⇒ (• 7→ T ) ⊢ • : t0 ⇐⇒ t0 ∈ T . Weonlude by taking T 0 suh that t0 ∈ T 0 that the model J_K∆ is not universal.It remains to see that it is strutural. The deomposition relation ⊲ is de�ned by
([d1]≡, [d2]≡) ⊲ [di]≡. Beause of the de�nition of δ, if [d]≡ ⊲ [d′]≡, then d must bea pair (d1, d2) in DZ × DZ . As a onsequene, the relation ⊲ is Noetherian.6.11 Towards type-hekingIn this setion, we introdue notions that will be useful to derive a type-hekingalgorithm. We also give the proof of Theorem 5.3 (loal exatness of the appliationrule). The existene results in this setion are e�etive (viz. it is possible to omputeJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 43the objets whose existene is asserted) provided that the subtyping relation isdeidable.Lemma 6.36. Let t be a type suh that t ≤ 1×××1. There exists a �nite set ofpairs of types π(t) ∈ Pf (T 2) suh that:�t ≃
∨∨∨

(t1,t2)∈π(t)

t1×××t2�∀(t1, t2) ∈ π(t). t1 6≃ 0 ∧ t2 6≃ 0Proof: We an write:
t ≃

∨∨∨

(P,N)∈N (t) s.t. P⊆Aprod(1×××1)∧∧∧ ∧∧∧a∈P

a\\\
∨∨∨

a∈N∩Aprod aUsing Lemma 6.4, we an rewrite any intersetion of produt types and omple-ment of produt types as a union of produt types P ′ ⊆ Aprod:
t ≃

∨∨∨

a∈P ′

aWe simply de�ne π(t) as {(t1, t2) | t1×××t2 ∈ P ′ ∧ t1 6≃ 0 ∧ t2 6≃ 0}.Lemma 6.37. Let t be a type suh that t ≤ 0→→→1. Then there exists a �nite setof pairs of types ρ(t) ∈ Pf (T 2) and a type Dom(t) suh that:
∀t1, t2. (t ≤ t1→→→t2) ⇐⇒

{

t1 ≤ Dom(t)
∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ t2)Proof: We an write:

t ≃
∨∨∨

(P,N)∈N (t) s.t. P⊆Afun(0→→→1)∧∧∧ ∧∧∧
a∈P

a\\\
∨∨∨

a∈N∩Afun aClearly, the Lemma is true for t ≃ 0 (with Dom(t) = 1 and ρ(t) = ∅), and if itholds for t and t′, then it also holds for t∨∨∨t′ (with Dom(t∨∨∨t′) = Dom(t)∧∧∧Dom(t′)and ρ(t∨∨∨t′) = ρ(t) ∪ ρ(t′)). We an thus assume without loss of generality that thas the form:
t =

∧∧∧

a∈P

a\\\
∨∨∨

a∈N

awith P, N ⊆ Afun, P 6= ∅, and t 6≃ 0. Lemma 6.13 gives: t ≤ t1→→→t2 ⇐⇒
∧∧∧

a∈P a ≤ t1→→→t2 and Lemma 6.8 tells us how to deompose this subtyping into:
∀P ′ ⊆ P.

(

t1 ≤
∨∨∨

s1→→→s2∈P ′

s1

)

∨



P 6= P ′ ∧
∧∧∧

s1→→→s2∈P\P ′

s2 ≤ t2



We an thus de�ne: Dom(t) =
∨∨∨

s1→→→s2∈P

s1Journal of the ACM, Vol. V, No. N, Month 20YY.
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ρ(t) = {(

∨∨∨

s1→→→s2∈P ′

s1,
∧∧∧

s1→→→s2∈P\P ′

s2) | P ′ ( P}

Corollary 6.38. Let t and t1 be two types. If t ≤ t1→→→1, then t ≤ t1→→→t2 has asmallest solution t2 whih we write t • t1.Proof: Sine t ≤ t1→→→1, we have t1 ≤ Dom(t). The assertion t ≤ t1→→→t2 is thusequivalent to:
∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ t2)that is:




∨∨∨

(s1,s2)∈ρ(t) s.t. (t1 6≤s1)

s2



 ≤ t2We write t • t1 for the left-hand side of this equation.We an now prove Theorem 5.3.Proof: Let t, t1 be two types suh that t ≤ t1→→→1. Clearly, if ⊢ vf : t and
⊢ vx : t1, then ⊢ vfvx : t • t1, and thus, subjet redution gives ⊢ v : t • t1 if
vfvx

⋆
; v.Let us prove the opposite impliation:

∀v. ⊢ v : t • t1 ⇒ ∃vf , vx. (vfvx
⋆
; v) ∧ (⊢ vf : t) ∧ (⊢ vx : t1)This property is learly true for t ≃ 0, and if it is true for t and t′, then it istrue for t∨∨∨t′ (beause 0 • t1 ≃ 0 and (t∨∨∨t′) • t1 ≃ (t • t1)∨∨∨(t′ • t1)). We an thusassume, as in the proof of Lemma 6.37, that t has the form:

t =
∧∧∧

a∈P

a\\\
∨∨∨

a∈N

awith P, N ⊆ Afun, P 6= ∅, and t 6≃ 0. Following the same argument as in theproof of Lemma 6.37, we get:
t • t1 =

∨∨∨

P ′(P s.t. t1 6≤
∨∨∨

t′

1
→→→t′

2
∈P ′

t′
1





∧∧∧

t′
1
→→→t′

2
∈P\P ′

t′2



and
t1 ≤

∨∨∨

t′
1
→→→t′

2
∈P

t′1Let v be a value of type t • t1. We an �nd P ′ ( P suh that t1 6≤
∨∨∨

t′
1
→→→t′

2
∈P ′ t′1and ⊢ v :

∧∧∧

t′
1
→→→t′

2
∈P\P ′ t′2. Let vx be a value of type t1\\\

∨∨∨

t′
1
→→→t′

2
∈P ′ t′1 and vf theJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 45abstration
µf(P ).λx. (y = x ∈

∨∨∨

t′
1
→→→t′

2
∈P ′

t′1 ? fy | v)It is then easy to hek that ⊢ vf : t and vfvx
⋆
; v.6.12 Type-heking algorithmIn this setion, we assume that the subtyping relation ≤ is deidable and we give atype-heking algorithm for our type system.The key di�ulty to overome is that the set of types t suh that Γ ⊢ e : t, for agiven environment Γ and a given expression e has no smallest element in general.Indeed, onsider the ase where e is a well-typed abstration. The (abstr) ruleallows us to hoose an arbitrary number of inomparable arrow types.We will thus introdue a new syntati ategory, alled type sheme to denote suhsets of types. The syntax for type shemes is given by the following produtions:t ::= t t ∈ T

| [t1→→→s1; . . . ; tn→→→sn] n ≥ 1; ti, si ∈ T

| t1 ⊗ t2
| t1 > t2
| ΩWe will write [ti→→→si]i=1..n for [t1→→→s1; . . . ; tn→→→sn]. We de�ne the funtion {{{_}}}whih maps shemes to sets of types:

{{{t}}} = {s | t ≤ s}

{{{[ti→→→si]i=1..n}}} = {s | ∃s0 =
∧∧∧

i=1..n

(ti→→→si) ∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j). 0 6≃ s0 ≤ s}

{{{t1 ⊗ t2}}} = {s | ∃t1 ∈ {{{t1}}}, t2 ∈ {{{t2}}}. t1×××t2 ≤ s}
{{{t1 > t2}}} = {s | ∃t1 ∈ {{{t1}}}, t2 ∈ {{{t2}}}. t1∨∨∨t2 ≤ s}
{{{Ω}}} = ∅Lemma 6.39. Let t be a type shema. Then {{{t}}} = ∅ if and only if Ω appearsin t. Moreover, {{{t}}} is losed under subsumption (t ∈ {{{t}}} ∧ t ≤ t′ ⇒ t′ ∈ {{{t}}}) andintersetion (t ∈ {{{t}}} ∧ t′ ∈ {{{t}}} ⇒ t∧∧∧t′ ∈ {{{t}}}).Proof: Straightforward indution on the struture of t.Lemma 6.40. Let t be a type sheme and t0 a type. We an ompute a typesheme, written t0 ? t, suh that:

{{{t0 ? t}}} = {s | ∃t ∈ {{{t}}}. t0∧∧∧t ≤ s}Proof: We de�ne t0 ? t by indution on t. If t is a type t, we take t0 ? t = t0∧∧∧t.If t is a union t1∨∨∨t2, we distribute: t0 ? t = (t0 ? t1) > (t0 ? t2). If t is Ω, orif {{{t}}} = ∅, we take t0 ? t = Ω. For the two remaining ases, we assume thatJournal of the ACM, Vol. V, No. N, Month 20YY.
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{t} 6= ∅, and we observe that:

t0 ≃
∨∨∨

(P,N)∈N (t)

∧∧∧

a∈P

a∧∧∧
∧∧∧

a∈N

¬¬¬aWe an thus see t0 as a Boolean ombination built with 0, 1, ∨∨∨, ∧∧∧, atoms andomplement of atoms. For t0 ≃ 0, we take t0 ? t = 0. For t0 ≃ 1, we take
t0 ? t = t. For t0 ≃ t1∨∨∨t2, we take t0 ? t = (t1 ? t) > (t2 ? t). For t0 ≃ t1∧∧∧t2,we take t0 ? t = t1 ? (t2 ? t). It remains to deal with the ase of an atom or aomplement of an atom.For the ase t = t1 ⊗ t2, we take:

(t1×××t2) ? (t1 ⊗ t2) = (t1 ? t1) ⊗ (t2 ? t2)
¬¬¬(t1×××t2) ? (t1 ⊗ t2) = ((¬¬¬t1 ? t1) ⊗ t2) > (t1 ⊗ (¬¬¬t2 ? t2))and if a ∈ A \Aprod:

a ? (t1 ⊗ t2) = 0
¬¬¬a ? (t1 ⊗ t2) = (t1 ⊗ t2)For the ase t = [ti→→→si]i=1..n, we take:

(t→→→s) ? [ti→→→si]i=1..n =















[ti→→→si]i=1..n if ∧∧∧

i=1..n

ti→→→si ≤ t→→→s0 if ∧∧∧

i=1..n

ti→→→si 6≤ t→→→s

¬¬¬(t→→→s) ? [ti→→→si]i=1..n =















0 if ∧∧∧

i=1..n

ti→→→si ≤ t→→→s

[ti→→→si]i=1..n if ∧∧∧

i=1..n

ti→→→si 6≤ t→→→sand if a ∈ A \Afun:
a ? [ti→→→si]i=1..n = 0

¬¬¬a ? [ti→→→si]i=1..n = [ti→→→si]i=1..n

Lemma 6.41. Let t be a type sheme and t a type. We an deide the assertion
t ∈ {{{t}}}, whih we also write t ≤ t.Proof: First, we make the observation that t ∈ {{{t}}} if and only if 0 ∈ {{{(¬¬¬t) ? t}}}.Indeed: 0 ∈ {{{(¬¬¬t) ? t}}} ⇐⇒ ∃s ∈ {{{t}}}. (¬¬¬t)∧∧∧s ≤ 0 ⇐⇒ ∃s ∈ {{{t}}}. s ≤ t ⇐⇒

t ∈ {{{t}}}. As a onsequene, we only need to deal with the ase t = 0. If {{{t}}} = ∅,then 0 ∈ {{{t}}} does not hold. Otherwise, we onlude by indution over theJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 47struture of t: 0 ∈ {{{t}}} ⇐⇒ t ≃ 00 6∈ {{{[ti→→→si]i=1..n}}}0 ∈ {{{t1 ⊗ t2}}} ⇐⇒ (0 ∈ {{{t1}}}) ∨ (0 ∈ {{{t2}}})0 ∈ {{{t1 > t2}}} ⇐⇒ (0 ∈ {{{t1}}}) ∧ (0 ∈ {{{t2}}})0 6∈ {{{Ω}}}Lemma 6.42. Let t be a type sheme and i ∈ {1, 2}. We an ompute a typesheme πi(t) suh that
{{{πi(t)}}} = {s | ∃t1×××t2 ∈ {{{t}}}.ti ≤ s}Proof: Let's take for instane i = 1. Note that ∃t1×××t2 ∈ {{{t}}}.t1 ≤ s is equivalentto s×××1 ∈ {{{t}}}.If t 6≤ 1×××1, then we take {{{π1(t)}}} = Ω. Otherwise, we proeed by indutionover the struture of t. For t = t1 > t2, we take π1(t) = π1(t1) > π1(t2). Fort = t1 ⊗ t2, we take π1(t) = t1. For t = t, we take π1(t) =

∨∨∨

(t1,t2)∈π(t) t1. Theother ases are impossible.Lemma 6.43. Let t and t1 be two type shemes. We an ompute a type shemet • t1 suh that
{{{t • t1}}} = {s | ∃t1→→→t2 ∈ {{{t}}}.t1 ∈ {{{t1}}} ∧ t2 ≤ s}Proof: We proeed by indution over the struture of t. For t = t1 > t2, wetake t • t1 = t1 • t1 > t2 • t1. For t = t1 ⊗ t2 or t = Ω, we take t • t1 =

Ω. For t = [t′i→→→s′i]i=1..n, we take t • t1 = (
∧∧∧

i=1..n(t′i→→→s′i)) • t1, so the onlyremaining ase is t = t. We observe that ∃t1→→→t2 ∈ {{{t}}}.t1 ∈ {{{t1}}} ∧ t2 ≤ s isequivalent to ∃t1 ∈ {{{t1}}}.t ≤ t1→→→s. Aording to Lemma 6.37, this is equivalentto: ∃t1 ∈ {{{t1}}}.t1 ≤ Dom(t) ∧ ∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ s). We now provethat this is equivalent to t1 ≤ Dom(t) ∧ ∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ s).The ⇒ impliation is immediate. Let us hek the ⇐ impliation. For every
(s1, s2) ∈ ρ(t) suh that s2 6≤ s, we have t1 ≤ s1 and it is thus possible to �nd atype t′1 ∈ {{{t1}}} suh that t′1 ≤ s1. We de�ne t1 as the intersetion of all these t′1and of Dom(t), and we thus have t1 ∈ {{{t1}}} ∧ t1 ≤ Dom(t) ∧ ∀(s1, s2) ∈ ρ(t). (t1 ≤
s1)∨ (s2 ≤ s). To onlude, we de�ne t • t1 as Ω if t1 6≤ Dom(t), and otherwise as:

∨∨∨

(s1,s2)∈ρ(t) s.t. (t1 6≤s1)

s2

We an now desribe a type-heking algorithm. We de�ne a sheme environmentas a �nite mapping � from variables to type shemes suh that {{{�(x)}}} 6= ∅ forevery x in the domain of �. The type-heking algorithm is formalized as a totalJournal of the ACM, Vol. V, No. N, Month 20YY.



48 · Alain Frish et al.funtion whih maps a sheme environment � and an expression e to a shemewritten �[e]. This funtion is de�ned by indution on the struture of e by thefollowing equations:


































































































































�[c] = bc�[(e1, e2)] = �[e1] ⊗ �[e2]�[µf(t1→→→s1; . . . ; tn→→→sn).λx.e] =

{ t if ∀i = 1..n. si ≤ si

Ω otherwisewhere { t = [ti→→→si]i=1..nsi = ((f : t), (x : ti),�)[e] (i = 1..n)�[x] =

{ �(x) if �(x) is de�ned
Ω otherwise�[πi(e)] = πi(�[e])�[e1e2] = �[e1] • �[e2]�[(x = e ∈ t ? e1|e2)] = s1 > s2where 















t0 = �[e]t1 = t ? t0t2 = (¬¬¬t) ? t0si =







((x : ti),�)[ei] if ti 6≤ 0,{{{ti}}} 6= ∅0 if ti ≤ 0
Ω if {{{ti}}} = ∅

(i = 1..2)We are now going to prove soundness and ompleteness of the algorithm. If �is a sheme environment and Γ is a typing environment, we write � ≤ Γ when �and Γ have the same domain and for all x in this domain �(x) ≤ Γ(x). If Γ1 and
Γ2 are two typing environment, we de�ne Γ1∧∧∧Γ2 by (Γ1∧∧∧Γ2)(x) = Γ1(x)∧∧∧Γ2(x)(unde�ned when one of the Γi(x) is not de�ned). Note that if � ≤ Γ1 and � ≤ Γ2,then � ≤ Γ1∧∧∧Γ2.Lemma 6.44 (Corretness). If �[e] ≤ t, then there exists Γ ≥ � suh that
Γ ⊢ e : t.Proof: By indution over the struture of e.

e = c. We have bc ≤ t, and thus ⊢ c : t. We an take for Γ an arbitrary typingenvironment suh that Γ ≥ �. We use the ∧∧∧ operator on typing environmentsand Lemma 6.14 to reonile di�erent Γ's given by several uses of the indutionhypothesis.
e = x. We have Γ(x) ≤ t. We an hoose Γ ≥ � suh that Γ(x) = t.
e = (e1, e2). We have �[e1]⊗�[e2] ≤ t. We an thus �nd t1 ≥ �[e1] and t2 ≥ �[e2]suh that t1×××t2 ≤ t. The indution hypothesis gives Γ1 ≥ � suh that Γ1 ⊢ e1 : t1and Γ2 ≥ � suh that Γ2 ⊢ e2 : t2. We take Γ = Γ1∧∧∧Γ2.
e = e1e2. We have �[e1] • �[e2] ≤ t. We an thus �nd t1, t2 suh that t1→→→t2 ≥�[e1], t1 ≥ �[e2] and t2 ≤ t. The indution hypothesis gives Γ1 ≥ � suh that
Γ1 ⊢ e1 : t1→→→t2 and Γ2 ≥ � suh that Γ2 ⊢ e2 : t1. We take Γ = Γ1∧∧∧Γ2.
e = πi(e

′). We have πi(�[e′]) ≤ t. We an thus �nd t1, t2 suh that t1×××t2 ≥ �[e′]and ti ≤ t. The indution hypothesis gives Γ ≥ � suh that Γ ⊢ e′ : t1×××t2. WeJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 49dedue that Γ ⊢ e : ti and by subsumption Γ ⊢ e : t.
e = (x = e′ ∈ t′ ? e1 | e2). We take t0 = �[e′], t1 = t′ ? t0 and t2 = (¬¬¬t′) ? t0.We also take s1 and s2 as in the orresponding ase of the de�nition of �[e]. Wehave s1 > s2 ≤ t. We an thus �nd s1 ≥ s1 and s2 ≥ s2 suh that t ≥ s1∨∨∨s2. Let'stake i ∈ {1, 2}. We will de�ne a type ti. We have si 6= Ω sine si ≥ si. Two asesremain. If ti 6≤ 0, we have si = ((x : ti),�)[ei]. The indution hypothesis gives
Γi ≥ � and ti ≥ ti suh that (x : ti), Γi ⊢ ei : si. Otherwise, we have si = 0 andwe take ti = 0. In both ases, we have ti ≥ ti.Let's onsider the type t0 = (t1∧∧∧t′)∨∨∨(t2∧∧∧¬¬¬t′). We now prove that t0 ≥ t0.Sine t1 ≥ t1 = t′ ? t0, there exists t′1 ≥ t0 suh that t′∧∧∧t′1 ≤ t1. Similarly,we have t′2 ≥ t0 suh that (¬¬¬t′)∧∧∧t′2 ≤ t2. We get t0 ≥ (t′∧∧∧t′1)∨∨∨((¬¬¬t′)∧∧∧t′2) ≥
(t′∧∧∧t′1∧∧∧t′2)∨∨∨((¬¬¬t′)∧∧∧t′1∧∧∧t′2) ≃ t′1∧∧∧t′2 ≥ t0.Sine t0 ≥ t0, the indution hypothesis gives Γ0 ≥ � suh that Γ0 ⊢ e′ : t0. Let'sonsider the types t′′1 = t0∧∧∧t ≤ t1 and t′′2 = t0∧∧∧(¬¬¬t) ≤ t2. By onsidering theintersetion of Γ0 and of Γ1 and Γ2 when they are de�ned, we �nd Γ ≥ � suhthat Γ ⊢ e′ : t0 and (xi : t′′i ), Γ ⊢ ei : si when ti 6≤ 0. The rule (case) gives
Γ ⊢ e : s1∨∨∨s2. By subsumption, we get Γ ⊢ e : t.
e = µf(t1→→→s1; . . . ; tn→→→sn).λx.e′. We take t and si as in the de�nition of theorresponding ase for �[e]. Sine �[e] 6= Ω, we get t ≤ t and si ≤ si for all
i = 1..n. The indution hypothesis gives, for eah i, an environment Γi ≥ �, andtwo types ti ≥ t, t′′i ≥ ti suh that (f : ti), (x : t′′i ), Γi ⊢ e′ : si.We de�ne the type t′ as ∧∧∧i=1..n ti∧∧∧t. We have t′ ≥ t = [ti→→→si]i=1..n. We anthus �nd a type t′′ of the form t′′ =

∧∧∧

i=1..n ti→→→si∧∧∧
∧∧∧

j=1..m¬¬¬(t′j→→→s′j) suh that
t′ ≥ t′′ and t′′ 6≃ 0.If we take for Γ the intersetion of all the Γi, we obtain (f : t′′), (x : ti), Γ ⊢ e′ : sifor all i from whih we onlude Γ ⊢ e : t′′ and thus Γ ⊢ e : t.Lemma 6.45 (Completeness). If � ≤ Γ and Γ ⊢ e : t then �[e] ≤ t.Proof: By indution over the derivation of Γ ⊢ e : t and ase disjuntion overthe last rule used in this derivation. The proof is mehanial. We give the detailsonly for the rule (case).

Γ ⊢ e : t0

{

t0 6≤ ¬¬¬t ⇒ (x : t0∧∧∧t), Γ ⊢ e1 : s
t0 6≤ t ⇒ (x : t0\\\t), Γ ⊢ e2 : s

Γ ⊢ (x = e ∈ t ? e1|e2) : sWe assume that � ≤ Γ and we take t0,t1, t2,s1,s2 as in the de�nition of �[(x =
e ∈ t ? e1|e2)]. We need to prove that s1 > s2 ≤ s, that is s1 ≤ s and s2 ≤ s. Wewill do the proof for s1 (the proof for s2 is similar).The indution hypothesis gives t0 = �[e] ≤ t0, from whih we get t1 ≤ t∧∧∧t0. Ift1 ≤ 0, then s1 = 0 ≤ s. Otherwise, sine {{{t1}}} 6= ∅, we have s1 = ((x : t1),�)[e1].We have t0 6≤ ¬¬¬t, otherwise t1 ≤ 0. We thus have a sub-derivation (x : t0∧∧∧t), Γ ⊢
e1 : s. The indution hypothesis, applied to the environment (x : t1),� givess1 ≤ s. Journal of the ACM, Vol. V, No. N, Month 20YY.



50 · Alain Frish et al.By ombining the two previous lemmas, we get an exat haraterization of thetype-heking algorithm in terms of the type system.Theorem 6.46. For any sheme environment � and expression e:
{{{�[e]}}} = {t | ∃Γ ≥ �.Γ ⊢ e : t}Corollary 6.47. Let Γ be a typing environment. It an also be seen as asheme environment. For any expression e and any type t, we have:

Γ ⊢ e : t ⇐⇒ Γ[e] ≤ tAs a speial ase, the expression e is well-typed under Γ if and only if {{{Γ[e]}}} 6= ∅.To onlude with the deidability of the type system, we observe that the asser-tion {{{Γ[e]}}} 6= ∅ is deidable (Lemma 6.39).7. COMMENTARIESIn Setion 2 we desribed the basi intuitions and we gave an overview of ourapproah. In this setion we omment and explain the intuition and motivationsthat underlie some more tehnial hoies we made in the formal development ofthe work.7.1 What does the losing-the-irle theorem mean?Theorem 5.5 is a nie and important property about our system. It means thatwhenever the interpretation of types as sets of values is a model, it indues the samesubtyping relation as the bootstrap model; as a onsequene, there is no point usingthis model as a new bootstrap model and iterating the whole proess again. Thetheorem is also an indiation that the typing rules are somewhat oherent withthe de�nition of models. It is a quality hek, but a limited one: we should resistthe temptation to read too muh from the theorem. Let us be expliit on thispoint: Theorem 5.5 does not say that the de�nition of models is �valid� in anyway. As a matter of fat, it is possible to hange the de�nition of models in verybogus ways and still be able to prove the theorem. If we follow losely the formaldevelopment, we see that we ould atually hange De�nition 4.3 and take anyde�nition for E(t1→→→t2) as long as Lemma 6.13 holds. For instane, we ould eventake a de�nition that makes arrow types ovariant in their domain, e.g. E(t1→→→t2) =
P(Jt1K) × P(Jt2K). Then, of ourse, the subjet redution theorem would fail tohold. We ould even see purely syntatial evidenes that something goes wrong(without introduing the operational semantis). With the bogus de�nition above,we would indeed see that:(1) the following rule is derivable:

Γ ⊢ e1 : t1 → t2 Γ ⊢ e2 : t

Γ ⊢ e1e2 : t2
(appl′)(whih means that the type system does not hek the type for the argumentin funtion appliations);Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 51(2) Lemma 6.15 (Admissibility of the intersetion rule) would fail to hold in general(but it would still hold for values). Indeed, the ase for appliations in its proofrelies on the ontravariane of arrow types in their domain.It is interesting to look at how Theorem 5.5 ould have failed with the urrentde�nition of models. The easiest way to break the theorem is the typing rule forabstrations. If we did not allow several funtion types to appear in λ-abstration,or if we did not allow negation of arrow types to appear in the type assigned to the
λ-abstration, then Theorem 5.5 would not hold.The fat that the de�nition of models (and thus subtyping) is �valid� with re-spet to our alulus is expressed by results from Setion 5.1: type-safety says thatsubtyping is sound with respet to the semantis of the alulus, and Theorem 5.3gives some further evidene that the whole system is oherent. As a �nal noteabout Theorem 5.5, we should emphasise here again that even if the interpretationof types is not a model (that is, if the bootstrap model is not well-founded), thentype-safety still holds.7.2 On the presriptive nature of types for λ-abstrationsThe λ-abstrations in our alulus ome with an expliit signature (a �nite sequeneof arrow types). This makes it possible to deide whether a funtional value has type
t→→→s or not, without looking at the funtion body and without relying on the typingjudgement. Suh a deision has to be made at run-time to redue a dynami type-dispath against a type suh as t→→→s. So, the result of type-dispath an depend onthe expliit type annotations on λ-abstrations. For instane, the expression (g =
(µf(true→→→true).λx.x) ∈ (false→→→false) ? 1 | 0) evaluates to 0 (beause true→→→true 6≤false→→→false), but (g = (µf(false→→→false).λx.x) ∈ (false→→→false) ? 1 | 0) evaluates to
1. This observation gives a �paradox� that we would obtain if we tried to de�nea Curry-style type assignment for λ-abstrations, that is, if we did not inludean expliit signature. Indeed, a funtion ould hek its own type and behavedi�erently aording to it. Consider for instane the value v = µf.λx.(g = f ∈true→→→true ? false | true). Then v maps true to true if and only if it does not havetype true→→→true.7.3 On the typing rule for abstrationsThe negative arrow types in the typing rule for λ-abstrations may look surprising.Indeed this rule an assign to the funtional value µf(true→→→true).λx.x the type
¬¬¬(false→→→false) even if semantially, the funtion maps the value false to itself. Wehave already explained in Setion 3.3 that we need these negative arrow types inorder to have the property that every value has type t or ¬¬¬t for any type. Theprevious setion showed a di�erent problem that arises if we try to get rid of theexpliit signature on λ-abstrations.If we rely on the typing judgement where the rule is modi�ed so as to disallownegative arrow types but without hanging the operational semantis, the alulustrivially remains type-safe. In this ase, the redution rule for the dynami typedispath must use the old judgement, so that we always have ⊢ v : t or ⊢ v : ¬¬¬t.This suggests a variation of the (abstr) rule whih would allow negative arrowJournal of the ACM, Vol. V, No. N, Month 20YY.



52 · Alain Frish et al.types only if the abstration is losed (the only free variables of the body an bethe funtion name or the argument name). This an be thought as some kindof value-restrition. With this new typing judgement, we preserve all the formalproperties of our alulus, inluding type preservation and Theorem 5.4, beausethe new typing judgement oinides with the old one on values.7.4 On the admissibility of a union ruleLemma 6.15 says that the following rule is admissible in our type system:
Γ ⊢ e : t1 Γ ⊢ e : t2

Γ ⊢ e : t1∧∧∧t2One might onsider the following dual rule for union types:
Γ, (x : t1) ⊢ e : t Γ, (x : t2) ⊢ e : t

Γ, (x : t1∨∨∨t2) ⊢ e : t
(union)Sine we have adopted a all-by-value semantis, variables in the environmentare meant to be substituted by values, and sine a value of type t1∨∨∨t2 has type t1or type t2, this rule is semantially sound (the substitution lemma would need to berestrited to values, though). However, this rule, whih orresponds to reasoningby ase disjuntion, is not admissible in our system: it would allow us to derive

(x : bool) ⊢ (x, x) : true×××true∨∨∨false×××false, while the smallest type the urrentsystem an assign to (x, x) under this typing environment is bool×××bool.Therefore the question about the opportunity of adding suh a rule to our systemnaturally arises. We deided not to do so sine we an simulate the union rule withan expliit annotation that drives the ase disjuntion. Let us write ase(x, t, e) forthe expression (y = x ∈ t ? e | e) (for y not free in e). Then the following rule isadmissible (and even derivable) in our system:
Γ, (x : t1) ⊢ e : t Γ, (x : t2) ⊢ e : t

Γ, (x : t1∨∨∨t2) ⊢ ase(x, t1, e) : tNote that e and ase(x, t1, e) are observationally equivalent (that is, they areindistinguishable when embedded in ground ontexts of basi type: see, for instane,De�nition 6.4.1 page 132 in [Amadio and Curien 1998℄). Then, replaing e withase(x, t1, e) is just an extra hint for the type-heker and it does not break existingtyping derivations. Indeed, the following rule is admissible:
Γ ⊢ e : t x ∈ Γ

Γ ⊢ ase(x, t1, e) : tSo, if we have a derivation for a judgement Γ ⊢ e : t in the system extendedwith the rule (union), it is possible to ompute an expression e′ observationallyequivalent to e and suh that Γ ⊢ e′ : t is derivable in the urrent system (viz.,without (union)). This expression is obtained by wrapping some sub-expressionsof e with the ase(_) operator, in orrespondene of the ourrenes of the (union)rule in the original derivation. Sine the same sub-expression an be typed severalJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 53times (beause of overloaded funtions), it is important that ase(_) does not breakexisting derivations.Finally it is interesting to notie that Piere's union elimination rule [Piere 1991℄
Γ ⊢ e : u1∨∨∨u2 Γ, x : u1 ⊢ e′ : s Γ, x : u2 ⊢ e′ : s

Γ ⊢ ase e of x ⇒ e′ : s
(Union-E)is a speial ase of our (ase) rule given in Setion 3.3 where e1 = e2 = e′,

t0 = u1∨∨∨u2, and t is either u1 or u2 (modulo an appliation of the Strengthen-ing Lemma�Lemma 6.14, Setion 6.3�when the intersetion of u1 and u2 is notempty).7.5 On the reason why reursion is restrited to funtionsOne might wonder why reursion is restrited to funtions in our alulus. Imaginewe had arbitrary reursion on expressions. Then the expression µx.(x, x) shouldbe a (reursive) value. We an onsider a reursive type t = (¬¬¬t)×××(¬¬¬t) and lookat whether the value v = µx.(x, x) has type t or not. Clearly, we expet to have
⊢ v : t if and only if ⊢ (v, v) : t, whih is equivalent to ⊢ (v, v) : (¬¬¬t)×××(¬¬¬t), and thusto ⊢ v : ¬¬¬t. But sine v is a value, this is equivalent to ¬(⊢ v : t). This paradoxjusti�es that we ombine reursion and λ-abstration in a single onstrution.As an aside, note that restriting reursion to single abstrations is enough tolet us enode mutually reursive funtions. For instane, assume that we want tode�ne two mutually reursive funtions:

f1(t1→→→s1; . . . ; tn→→→sn).λx.e1

f2(t
′
1→→→s′1; . . . ; t

′
m→→→s′m).λy.e2where the body of the two funtions an refer to both f1 and f2. A possible enodingof the de�nition above is

µf({1}→→→
∧∧∧

i=1..n ti→→→si; {2}→→→
∧∧∧

j=1..m t′j→→→s′j).

λc.(c = c ∈ {1} ?
µf1(t1→→→s1; . . . ; tn→→→sn).λx.e1σ |
µf2(t

′
1→→→s′1; . . . ; t

′
m→→→s′m).λy.e2σ)where {1} and {2} are two basi singleton types (with assoiated onstants 1 and

2) and the substitution σ replaes f1 with (f 1) and f2 with (f 2). Other enodingsare possible and left as an exerise to the reader.8. RELATED WORKThis work started from our desire to extend the work by Hosoya and Piere onXDue [Hosoya and Piere. 2003℄ with �rst-lass funtions and arrow types, there-fore it is natural to start this setion with it. XDue is a domain spei� languagespeially designed to write XML transformations. Values are fragments of XMLdouments, whih an be desribed by so-alled regular expression types [Hosoyaet al. 2000℄ (this notion of types generalises some widely used notions of types forXML douments suh as DTD or XML-Shema). In XDue a subtyping relationallows the programmer to use impliitly an expression of type t where an expressionof type s is expeted, provided that t is a subtype of s. Despite the rihness of thetype algebra, the de�nition for this subtyping relation is extremely simple: sineJournal of the ACM, Vol. V, No. N, Month 20YY.



54 · Alain Frish et al.types denote sets of values, subtyping an simply be desribed as the set-theoretiinlusion of interpretations. As a matter of fat, XDue types an express exatlyregular tree languages. It is well known that this lass of languages is losed underall Boolean operators: the di�erene or the intersetion of two XDue types an beexpressed by XDue types, even if there is no expliit onstrutors for intersetionor negation (probably, in order to keep the syntax of types as simple as possible).As far as we know, XDue was the �rst type system with subtyping where typesare interpreted purely set-theoretially and where sets denoted by types are losedunder all Boolean operators.XDue also has a powerful notion of pattern mathing [Hosoya and Piere 2001℄,where patterns are basially types extended with apture variables. In partiular,a pattern mathing an perform arbitrary dispath on types at run-time, so thatXDue semantis is atually driven by types. Beause of the very rih type algebra(and in partiular of the fat that it is losed under Boolean operators), the statitype-heking of pattern mathing results very preise.Despite its very funtional style (mutually reursive funtions, strutural types,pattern mathing), XDue laks �rst-lass funtions. Our initial goal was thus to�ll this gap while preserving XDue key ingredients: (i) a rih type algebra, whihsupports reursive types, subtyping and a omplete set of Boolean operators, andinterpret them in a purely set-theoreti way (inluding negation); (ii) a type-drivensemantis (to whih we add overloaded funtions so that we an re�et dynamitype dispath on funtions' interfaes). Other diretions for pratially embeddingXDue type system into general purpose languages have been studied indepen-dently, e.g. Xtati [Gapayev and Piere 2003℄ or OCamlDue [Frish 2006℄. In thiswork, though, we did not want to embed XDue into some host type system, but tostudy the impliations of keeping its salient features, in partiular a omplete set ofBoolean ombinators, while designing a whole language with �rst-lass funtions.The same goal was pursued by Jér�me Vouillon in a reent work [Vouillon 2006℄ byfollowing an approah opposite to ours. Vouillon gives up intersetion and negationtypes and starts from a partiular model of funtions in order to avoid a irular-ity. In partiular, this is obtained by de�ning a subtyping relation via a dedutionsystem that is then used to type the expressions of the language. This indues amodel of values that, thanks to the absene of intersetions (besides negations), issound and omplete with respets to the syntatially de�ned subtyping relation.The advantage of giving up intersetions and negations is that besides arrow types,the system also aounts for parametri expliit polymorphism.We already disussed in the introdution why our work �lls the gap between existingwork on intersetion types and that on lately bound overloaded funtions. Morepreisely, on the one hand we have the work on overloading where funtions an beformed of di�erent piees of ode stuk together, eah piee of ode orresponding toa di�erent input type; however the types of these overloaded funtions do not havea set-theoreti haraterisation as intersetion types instead have [Castagna et al.1995℄. On the other hand, there is the line of researh on intersetion (and union)types [Barendregt et al. 1983; Coppo and Dezani-Cianaglini 1980; Barbanera et al.1995; Reynolds 1991; 1996℄, where types have a set-theoreti behaviour but wheredi�erent omponents of an intersetion of arrows annot orrespond to di�erentJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 55piees of ode: intersetions stem from di�erent repeated typings of a same ode,whene a ��avour� of parametriity (where the �parameter� is the hypothesis used ineah typing of a funtion body). We an now better pinpoint where suh a ��avour�omes from. It resides in the equivalene we disussed at the end of Setion 2.6,that is
(t1→→→s1)∧∧∧(t2→→→s2) ≃ (t1∨∨∨t2)→→→(s1∧∧∧s2) . (7)This, in some sense, states that it is not possible to have a funtion with twodi�erent behaviours that are hosen aording to the type of the argument (seeAppendix A.3 for a semanti interpretation of this fat). The equation above holdsin the theory of union and intersetion types of [Barbanera et al. 1995℄,7 and al-though it annot be proved in the theory of Forsythe, it is not possible, in general,to write a term in Forsythe that separates the two types of equation (7).8 Animportant piee of work related to this aspet of the researh is the work on re-�nement types. When re�nement types are used for logial frameworks [Pfenning1993℄, then they have with respet to equation (7) the same behaviour as the workson union and intersetion types we ited above. Yet, when re�nement types areoupled with datatype de�nitions and applied to ML, then they work better inthis respet, sine it is then possible to write funtions with intersetion types inwhih a partiular piee of ode is exeuted only for a given input type [Freemanand Pfenning 1991℄. It is thus possible to write a term that separates two typesof the same form as in equation (7). However, this works only for the delared re-�nements of a datatype and, therefore, it does not aount for all possible subsetsof a generi type. Therefore the strit ontainment of the types in (7) annot beproved in general. Rather than a drawbak, this is a diret onsequene of usingre�nement types with Curry-style λ-abstrations: using Churh-style abstrations,as we do, may require ode-dupliation, in partiular in ase of overloaded fun-tions that return funtions with varying types but with the same behaviour. Whilethis dupliation an be avoided by unurrifying the overloaded funtion, it wouldmake it impratial to use intersetions in the way they are used in the ontext ofre�nement types.A mainstream way to deal with a omplex type algebra with Boolean operators isto rely on a denotational semantis for the alulus and to interpret types as idealsin this model. There exist a rih literature that follows this approah, for instaneAiken and Wimmers [Aiken and Wimmers 93; Aiken et al. 1994℄, Damm [Damm1994b; Vouillon and Melliès 2004℄, Melliès and Vouillon [Vouillon and Melliès 2004;Melliès and Vouillon 2005℄. Even Amadio and Cardelli's seminal paper on subtypingreursive types [Amadio and Cardelli 1993℄ proposes a �denotational� interpretationof types (as omplete uniform partial-equivalene relations). The main di�erenebetween our work and this line of researh is that we annot rely on a denota-tional semantis either for the alulus (beause of the type-driven semantis9) or

7Idem, axioms (11) and (12) of De�nition 3.3.
8Besides, in Forsythe there is the onstraint of �oherene� so that, as a onrete example, it isnot possible to de�ne an overloaded funtion of type (int→int)∧(real→real) that when applied toan integer returns zero and when applied on a non-integer real returns one.
9The de�nition of a denotational semantis for a language with overloaded funtions and dynamiJournal of the ACM, Vol. V, No. N, Month 20YY.



56 · Alain Frish et al.for the types (beause we want to interpret negation as set-theoreti omplementand all the denotational interpretations of types we are aware of are not losedunder omplement). The tehniques devised in our formal development are thusquite di�erent from those used before and some aspets of our alulus might seemstrange when looked from the point of view of denotational semantis. An exam-ple of �strangeness� is our treatment of negative arrow types in the typing rule forabstrations.One way to position our paper within the existing literature is to onsider thatwe show how to introdue and study a semanti notion of subtyping, not only whenno denotational semantis for the alulus an aount for type negation, but evenwhen a denotational semantis for the alulus is out of reah. Our use of the ad-jetive �semanti� refers spei�ally to the de�nition of subtyping (by opposition toa syntati/axiomati de�nition), and not to the semantis of the alulus. Stritlyspeaking we do not even give a semantis of types: the interpretation of types isfuntional to the semantis of the subtyping relation, but it is not intended to de-sribe what types are. This is lear when onsidering our universal model: arrowtypes are interpreted as sets of �nite relations, but it is patent that the types of thelanguage we presented are not sets of �nite graph funtions. The only semantis wede�ne is the semantis of subtyping. This is perfuntory haraterised by the inter-pretation of Boolean onstrutors and of the empty types. More preisely, sine werequire that union, intersetion, and negation type onstrutors are interpreted asthe orresponding set-theoreti operators (or, equivalently, that they obey the samelaws as the orresponding set-theoreti operators), then the semantis of subtypingis univoquely identi�ed by the set of empty types. So the ore of this work sumsup to identifying the set of types that are equivalent to the empty type. This islearly less demanding than de�ning the entire semantis of types or, a fortiori, thesemantis of a omplete language.In addition to the fundamental di�erene that we disussed above, it is interestingto ompare in more details our work with Damm's [Damm 1994b℄. Damm's systeminludes intersetion and union types, and is also based on ideas from the theory ofregular tree languages. Spei�ally, it enodes a funtion type as a set of sequenesthat represent all the possible graphs for �nite approximations of funtions in thistype; this indiret interpretation does not give a diret and e�etive subtyping rulefor Boolean ombinations of arrow types. We ould not extrat from [Damm 1994b℄a onrete haraterisation of the subtyping relation. Instead, our diret treatmentgives a new and non-trivial subtyping rule for arrow types, whih turned out to beuseful in other ontexts. In partiular, a onnetion has been established betweenthis rule and the minimal relevant logi B+ [Dezani-Cianaglini et al. 2002℄.The foundational work by Melliès and Vouillon [Vouillon andMelliès 2004; Mellièsand Vouillon 2005℄ generalises the model of ideals for reursive and polymorphitypes proposed by MaQueen, Plotkin, and Sethi [MaQueen et al. 1986℄. Theirapproah shares with our work the primay of the types over the expressions, insofardispath�as the one studied here� is still an open problem: the attempts at reatingsuh ade�nition we are aware of either put strong restritions on dynami dispath [Castagna et al.1993; Tsuiki 1994℄ or they impose a strati�ed onstrution of higher order types [Studer 2001℄ (atehnique introdued for λ& to enfore strong normalisation [Castagna et al. 1995℄).Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 57as the latter are somehow funtional to the justi�ation of the former (in [Vouillonand Melliès 2004; Melliès and Vouillon 2005℄ types are sets of intentionally de�nedexpressions, in the sense that they are de�ned in terms of some properties theymust satisfy). Contrary to our work, Melliès and Vouillon are not interested inpreserving a stritly set-theoreti interpretation of Boolean operators (e.g. theirunion type is an over-approximation of the set-theoreti union), they do not areabout the ompleteness of this set of operators (negation is not aounted for,although it should be possible to add it10), and they do not insist of the e�etivenessof the subtyping relation. Atually, in [Vouillon and Melliès 2004; Melliès andVouillon 2005℄ the subtyping relation plays the role of a onsisteny hek fortheir denotational semantis (only soundness of the subtyping rules is stated). Ourresearh aims at a far more modest and pratial target: we are not trying to givea denotational aount for subtyping and Boolean operators, but only to de�ne asubtyping relation. As suh we are muh more in the realm of the syntax than theone of the semantis.9. CONCLUSIONOur original motivation for developing the theory presented in this artile was theaddition of �rst-lass funtions to XDue while preserving the set-theoreti ap-proah to subtyping. This was the starting point of the CDue projet [CDUCE ℄,aiming at developing a programming framework overing several aspets of XMLprogramming: e�ient implementation, query languages, web-servies, web pro-gramming, and so on.The reader might be surprised to fae suh a omplex theory in the setting ofan XML-oriented funtional language. First, we should mention that XML playsno role in the omplexity of the theory. The irularity whih our bootstrappingtehnique addresses omes only from the ombination of arrow types, reursive typesand Boolean onnetives. Sine XDue already had reursive types and Booleanonnetives, it seemed natural to add arrow types and to fully integrate them withthese features. Simpler solutions ould have been possible, e.g. by stratifying thetype algebra so as to avoid any interation between arrow types and existing XDuetypes: this is what the �rst author did to integrate XDue types into an ML-basedtype system [Frish 2006℄.Seond, we ould have presented the theory without introduing the abstratonept of models. Indeed, for the appliation to a spei� programming language,we ould have worked diretly with the universal model (Setion 6.8). That said, webelieve that the urrent presentation better aptures the essene of our approah.Working diretly with a spei� model might have seemed mysterious and ad ho.Although we presented our notion of model and the bootstrapping tehnique ona spei� type algebra and for a spei� alulus, our framework is quite robust.The Appendix shows how to extend our system with referene types or to modify it
10One of the JACM reviewers suggested that negation ould be interpreted as the omplement ofreduibility andidates for weak normalisation and onjetures that suh an interpretation wouldbe ompatible with Melliès and Vouillon's approah �hene, with reursive types� as long asone adds a strati�ation on terms to the language as in the language interpreted by MaQueen,Plotkin and Sethi in the ideal model. Journal of the ACM, Vol. V, No. N, Month 20YY.



58 · Alain Frish et al.to deal with non-overloaded funtions. Frish's Ph.D. thesis [Frish 2004℄ desribesanother variant of the system where appliation is always well-typed (the opera-tional semantis an return any value if the funtion is not prepared to deal withthe argument and the type system does not give any stati information about thetype of the result). All these modi�ations are quite loal and do not hange thestruture of the formal development nor the main properties of the system.More importantly, our approah and the tehniques we developed turned out tohave muh a broader appliation than we initially expeted. What we devised isthe �rst approah for a higher order λ-alulus in whih union, intersetion, andnegation types have a set-theoreti interpretation. The logial relevane of theapproah was independently on�rmed by Dezani et al. [Dezani-Cianaglini et al.2002℄ who showed that the subtyping relation indued by the universal model ofSetion 6.8 restrited to its positive part (that is arrows, unions, intersetions but nonegations) oinides with the relevant entailment of the B+ logi (de�ned 30 yearsbefore we started our work). This same approah an be applied to paradigms otherthan λ-aluli: Castagna, De Niola and Varaa [Castagna et al. 2005; Castagnaet al. 2007℄ use our tehnique to de�ne the Cπ-alulus, a π-alulus where Booleanombinators are added to the type onstrutors ch
+(t) and ch

−(t) whih lassifyall the hannels on whih it is possible to read or, respetively, to write a valueof type t. The tehnique using the extensional interpretation is still needed forardinality reasons, however bootstrapping in Cπ has a di�erent �avour, sine itgenerates a model that is muh loser to the model of values. Interestingly, thismodel is de�ned by a �x-point onstrution. Cπ features several points that are inommon with or dual to CDue: Cπ presents the same paradox one meets whenadding referene types to CDue [Castagna and Frish 2005℄. The paradox an beavoided by restriting Cπ to its �loal� version [Castagna et al. 2005℄ or by using lessexpressive models [Castagna et al. 2007℄ but in the former ase the type shemesof Setion 6.12 must be reintrodued, in spite of the fat that they are not neededfor the full version of Cπ. Another striking resemblane between CDue and Cπthat is worth mentioning is that in order to deide the subtyping relation for Cπ,one takles the same di�ulties as those met in deiding general subtyping for apolymorphi extension of CDue (atually of XDue [Hosoya et al. 2005℄), namely,one must be able to deide whether a type is a singleton or not. An informalintrodution to these aspets an be found in [Castagna 2005℄, while the formalorrespondene between CDue and Cπ is studied in [Castagna et al. 2006℄.Finally, let us onlude with a more subjetive remark. When we applied ourapproah to distint paradigms we often had the impression that our tehniquepushed the various systems to their limits: by hoosing appropriate models weould mimi the existing type systems, but by tweaking them a little bit we ouldreah some �semanti� limits, suh as the inompatibility of reursion and somenaive implementations of referenes and hannels or the need to desend downat the atomiity of types to deide subtyping. This seems to suggest that ourtehnique exhibits and gives us some insights about some intrinsi di�ulties thatappear when Boolean operators are ombined with various type onstrutors.Journal of the ACM, Vol. V, No. N, Month 20YY.
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(2, e); and the ase disjuntion case e of inl(x1) → e1 | inr(x2) → e2 beomes:

(x = e ∈ {1}×××1 ? e1[x1 := π1(x)] | e2[x2 := π1(x)])If we want to extend our system with built-in sum types instead of enodingthem, all hanges are straightforward. For example, the de�nition of the extensionalinterpretation would be: E(t1+++t2) = Jt1K + Jt2K ⊆ D + D(where + on the right-hand side denotes the set-theoreti disjoint sum).More omplex data onstrutors an be similarly added. For instane, Frish'sthesis [Frish 2004℄ details the onstrution of extensible reords whih support on-atenation and �eld removal. The subtyping rules that are derived from mehanialset-theoreti �arithmeti� are rather omplex.Journal of the ACM, Vol. V, No. N, Month 20YY.



62 · Alain Frish et al.A.2 Referene ellsBesides being a fasinating objet of type theoretial study, referene types are avery useful and used programming onstrution. Therefore, we might want to addreferene ells to our system. To this end, we would add a new kind of unary typeonstrutor ref(t).Before extending our alulus, let us desribe a �paradox� that arises with ref-erene ells in presene of a set-theoreti interpretation of Boolean onnetives.Intuitively, a value of type ref(t) should be a ell from whih we must be preparedto read any value of type t and to whih we are allowed to write any value of thistype. Clearly, with suh an interpretation, the type ref(t)∧∧∧ref(s) should be emptyas soon as t and s are not equivalent; otherwise, any value in this intersetion wouldgive a way to oere for free from one type to the other. Conversely, if t ≃ s, then
ref(t)∧∧∧ref(s) ≃ ref(s), and if s 6≃ 0, this type should not be empty (if s ≃ 0, then
ref(s) an be empty, it su�es to disallow uninitialised referenes). So, intuitivelyfor all types t,s with s 6≃ 0:

ref(t)∧∧∧ref(s) 6≃ 0 ⇐⇒ t ≃ s (8)Can we de�ne a notion of model to aount for this behaviour? The answer isno. To see why, onsider a non-empty basi type b, and build the reursive type
t = b∨∨∨(ref(t)∧ref(b)). Sine the basi type does not interset referene types, then
t is equivalent to b if and only if the right hand side of the union in its de�nition isempty, that is:

t ≃ b ⇐⇒ ref(t) ∧ ref(b) ≃ 0and beause of (8), we obtain:
t ≃ b ⇐⇒ t 6≃ bThis negative result does not mean that it is impossible to add referene typesto our system, only that we annot do it and validate equation (8). This equationwas obtained by the argument that whatever value we write in a referene, we mustbe prepared to read it bak from it. So let us imagine a notion of referene ellwhih omes with two sets: a set X1 of values that an be read from it, and a set

X2 of values that an be written to it. We an for instane design the operationalsemantis suh that if we try to write a value v in it, it simply disards it if v 6∈ X1(the type system will ensure that v ∈ X2). A referene marked (that is, expliitlytyped) with the pair (X1, X2) should thus have type ref(t) when X1 ⊆ JtK ⊆ X2and X1 6= ∅. With these intuitions in mind, the formal de�nitions follow. We startwith the de�nition for the extensional interpretation:E(ref(t)) = ref(JtK) ⊆ D × P(D) × P(D)where the right-hand side is de�ned by:
ref(X) = {(d, X1, X2) | d ∈ X1 ⊆ X ⊆ X2}We also extend the alulus with the following onstrutions:

e ::= . . . | !e | (e := e) | reft1,t2(e)Journal of the ACM, Vol. V, No. N, Month 20YY.
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v ::= . . . | reft1,t2(v)The �rst and seond produtions of expressions are for dereferening and assign-ment. The orresponding typing rules are standard (we arbitrarily take 1 as theresult type for the assignment):

Γ ⊢ e : ref(t)

Γ ⊢!e : t

Γ ⊢ e1 : ref(t) Γ ⊢ e2 : t

Γ ⊢ (e1 := e2) : 1The third new onstrution reates a referene with the result of e as the initialvalue and t1, t2 as markers (orresponding to X1 and X2 in the de�nition of ref(X)).Note that we onsider here reft1,t2(v) as a value (when it is well-typed). Of ourse,to de�ne the operational semantis, we would need a notion of store and loationsto aount for the sharing of referene ells. Sine this is standard, we do notformalise suh a semantis here. It su�es to say that a referene reation mustredue to a fresh loation; this redution would extend the store to map the loationto the initial value for the referene. Suh a redution should be disallowed under a
λ-abstration with several arrow types (one an, for instane, use a weak redutionsemantis).The expression reft1,t2(e) should have type ref(t) if and only if t1 ≤ t ≤ t2;otherwise, following our experiene with funtion types, it should have type¬¬¬ref(t).As a onsequene, in order to preserve the admissibility of the intersetion rule, weuse the following typing rule:

Γ ⊢ e : t1 ∀i = 1..n. t1 ≤ si ≤ t2 ∀j = 1..m. ¬(t1 ≤ s′j ≤ t2)

Γ ⊢ reft1,t2(e) :
∧∧∧

i=1..n

ref(si) ∧
∧∧∧

j=1..m

¬¬¬ref(s′j)Although we do not formalise the operational semantis, the intuition is thatat any point during run-time, a referene ell of type ref(t) will have the form
reft1,t2(v) where v is a value of type t1 and t1 ≤ t ≤ t2. Reading the ontent ofsuh a referene returns v. Writing a value v′ heks dynamially if v′ has type t1and if so, replaes v with v′; otherwise, nothing happens. Our type system ensuresthat any value read from a referene of type ref(t) has type t and that any value
v assigned to a referene of type ref(t) has type t (but if the referene is of theform reft1,t2(v

′) with v not in t1 it might deide to rejet this value silently). Ofourse, we do not really want referenes to rejet values we assign to them. But itis lear that if the original program only ontains referene expressions of the form
reft,t(e), this will never happen. Allowing two di�erent types t1, t2 is just a way toobtain the analog of Theorem 5.5 and to avoid the �paradox� implied by equation(8) at the beginning of this setion.All the formal de�nitions and results about models and the type system are easilyadapted. Here, we only hint at the non-trivial points. We start with a set-theoretilemma to study the subtyping relation indued by models:Journal of the ACM, Vol. V, No. N, Month 20YY.



64 · Alain Frish et al.Lemma A.1. Let (Xi)i∈P and (Yj)j∈N two families of subsets of D. Then:
⋂

i∈P

ref(Xi) ⊆
⋃

j∈N

ref(Yj)

⇐⇒
(

⋂

i∈P

Xi = ∅

) or (∃j ∈ N.
⋂

i∈P

Xi ⊆ Yj ⊆
⋃

i∈P

Xi

)Proof: The ⇐ impliation is straightforward. For the opposite diretion, weassume that ⋂i∈P ref(Xi) ⊆
⋃

j∈N ref(Yj) and ⋂i∈P Xi 6= ∅. We de�ne Z1 as
⋂

i∈P Xi and Z2 as ⋂i∈P Yi. We pik an element d from Z1 whih is not emptyby hypothesis. The triple (d, Z1, Z2) is in ⋂i∈P ref(Xi), and thus, by hypothesis,also in ⋃j∈N ref(Yj). This gives a j suh that (d, Z1, Z2) is in ref(Yj) and therest of the proof follows easily.Note in partiular that ref(t)∧∧∧ref(s) is empty if and only if t∧∧∧s is empty, soequation (8) does not hold. However, we also observe the invariane property
ref(t) ≤ ref(s) ⇐⇒ t ≃ s or t ≃ 0 whih is the least we an expet fromreferene types.We want the reursive type t = ref(t) to be empty. For ardinality reason, weannot extend the notion of strutural interpretation by requiring D × P(D) ×
P(D) ⊆ D, Jref(t)K = ref(JtK). We use the same trik as for funtion types. Wede�ne:

reff (X) = {(d, X1, X2) | d ∈ X1 ⊆ X ⊆ X2} ⊆ D × Pf (D) × Pcf (D)where Pcf (D) denotes the set of o�nite subsets of D. We an easily hek thatreplaing ref(_) by reff (_) in the Lemma above does not hange anything when
P and N are �nite. We now take the following de�nition for a strutural interpre-tation:�D2 ⊆ D and D × Pf (D) × Pcf (D) ⊆ D�for any types t1,t2: Jt1×××t2K = Jt1K × Jt2K�for any type t: Jref(t)K = reff (JtK)�The binary relation on D indued by (d1, d2)⊲di and by (d, X1, X2)⊲d is Noethe-rian.The de�nition of the universal model is adapted aordingly: D0 is the initialsolution to the equation D0 = C +D0×D0+Pf (D0×D0

Ω)+(D×Pf (D)×Pcf (D)).Conretely, we add a new prodution to this indutive de�nition of elements of D0:
d ::= . . . |(d, {d, . . . , d}, D0\{d, . . . , d})The de�nition of the prediate (d : t) is extended with:

((d, {d1, . . . , dn}, D
0\{d′1, . . . , d

′
m}) : ref(t)) = (d : t) ∧ ∀i.(di : t) ∧ ∀j.¬(d′j : t)Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 65Related work. Davies and Pfenning [Davies and Pfenning 2000℄ show an issuearising from the ombination of referenes ells and intersetion types. The problemappears if we allow impliitly-typed (Curry-style) ell reation, like ref(1). Thisreferene an be given many types, like ref(1), ref(int), ref(int∨∨∨bool), ref(1). Ifwe allow to give it an intersetion of suh types, say ref(int)∧∧∧ref(1), it is possibleto assign to it an arbitrary value (if, by subsumption, we see it with type ref(1)),but, when we read from it, we expet to read a value of type int (if we see itwith type ref(int)). In [Davies and Pfenning 2000℄, the solution is to restrit theintrodution of intersetion types to values and to remove the distributivity rule
(t→→→s1)∧∧∧(t→→→s2) ≤ (t→→→s1∧∧∧s2). We do not follow suh an approah beause it has aglobal impat on the whole system: hanging axiomatially the subtyping betweenfuntion types is not possible in our system. We prefer the simpler approah thatonsists in having presriptive types for referene ells. When we reate a refereneell, we give enough information to infer a single unique type for the ell ontents.A.3 Non-overloaded funtionsThe alulus introdued in this paper let speify several arrow types in λ-abstration.In this setion, we show how to restrit the alulus and the type system to allowonly one arrow type. The syntax of λ-abstrations is restrited to

µf(t→→→t).λx.eTo type this expression we an use the same type system as for our original alulus.It is easy to hek that the operational semantis will never introdue overloadedfuntions if the original expression does not ontain any. From that we dedue thatthe alulus remains sound. However, the interpretation of types as sets of valueshanges and beause of that, Theorem 5.5 no longer holds. To see why, take fourtypes t1, s1, t2, s2 and onsider the type (t1→→→s1)∧∧∧(t2→→→s2). Values of this type arelosed well-typed expressions of the form µf(t→→→s).λx.e suh that t→→→s ≤ ti→→→si for
i = 1..2. But t→→→s ≤ ti→→→si an be deomposed into (t ≃ 0) ∨ (ti ≤ t ∧ s ≤ si).The ondition is thus equivalent to (t ≃ 0) ∨ (t1∨∨∨t2 ≤ t ∧ s ≤ s1∧∧∧s2), whih isagain equivalent to t→→→s ≤ (t1∨∨∨t2)→→→(s1∧∧∧s2). We have proved that in the restritedalulus, we have the following property:

J(t1→→→s1)∧∧∧(t2→→→s2)KV
= J(t1∨∨∨t2)→→→(s1∧∧∧s2)KVbut it is easy to hek that

(t1→→→s1)∧∧∧(t2→→→s2) ≤ (t1∨∨∨t2)→→→(s1∧∧∧s2)does not hold in general. This is enough to onlude that Theorem 5.5 does nothold.To reover Theorem 5.5 and all the other formal results, we need to adapt justone de�nition. In the new restrited alulus, the type t→→→s should desribe allthe well-typed and losed expressions of the form µf(t′→→→s′).λx.e, provided that
t′→→→s′ ≤ t→→→s. This ondition an be deomposed into t ≤ t′ ∧ s′ ≤ s. 11 Following
11We ould use a more omplex deompositionof t′→→→s′ ≤ t→→→s as (t ≤ t′ ∧ s′ ≤ s) ∨ t ≃ 0. Thiswould make the development slightly omplex without any real bene�t.Journal of the ACM, Vol. V, No. N, Month 20YY.



66 · Alain Frish et al.this intuition, we adapt De�nition 4.2; if X and Y are subsets of D, we de�ne
X → Y as:

X → Y = {(X ′, Y ′) ∈ P(D) × P(D) | X ⊆ X ′ ∧ Y ′ ⊆ Y }and keep De�nition 4.3 unhanged (with the new de�nition for X → Y and ED =
C +D2+P(D)×P(D)). This modi�ation is enough to establish all the theoremsfrom Setion 5 for the restrited alulus. Let us just outline some key modi�ationswe need to do to aount for the new systemLemma A.2. Let (Xi)i∈P , (Xi)i∈N , (Yi)i∈P , (Yi)i∈N be four families of subsetsof D. Then:

⋂

i∈P

Xi → Yi ⊆
⋃

i∈N

Xi → Yi

⇐⇒

∃i0 ∈ N.Xi0 ⊆
⋃

i∈P

Xi ∧
⋂

i∈P

Yi ⊆ Yi0Proof: Let us prove the ⇒ diretion. We take X =
⋃

i∈P Xi and Y =
⋂

i∈P Yi.The element (X, Y ) is in ⋂i∈P Xi → Yi and so it is also in ⋃i∈N Xi → Yi. Wean thus �nd i0 ∈ N suh that (X, Y ) ∈ Xi → Yi, that is: Xi0 ⊆ X ∧ Y ⊆ Yi0 .The other diretion is straightforward.From this we learn how to adapt Lemma 6.8:Lemma A.3. Let P and N be two �nite subsets of Afun. Then:
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a)

⇐⇒

∃(t0→→→s0) ∈ N.

t
t0\\\

(

∨∨∨

t→→→s∈P

t

)|
= ∅ ∧

t(
∧∧∧

t→→→s∈P

s

)

\\\s0

|
= ∅(with the onvention ⋂a∈∅ E(a) = EfunD = P(D) × P(D)).De�nition 6.9 is adapted by taking:

CP,Nfun ::= ∃t0→→→s0 ∈ N.























N

(

t0∧∧∧
∧∧∧

t→→→s∈P

¬¬¬t

)

∈ S

N

(

(¬¬¬s0)∧∧∧
∧∧∧

t→→→s∈P

s

)

∈ Sand the following results follow: Theorem 6.10, Corollary 6.11, Corollary 6.12,Lemma 6.13, all the results from Setion 6.3 and Setion 6.4, where Lemma 6.21 ismodi�ed as follows:
Jt→→→sK

V
= {(µf(t′→→→s′).λx.e) ∈ V . | t′→→→s′ ≤ t→→→s}Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti Subtyping · 67The ase for funtions in the proof of Lemma 6.27 needs to be adapted as well.The value v whih is produed in this ase is now v = µf(t0→→→s0).λx.fx where
t0 =

∨∨∨

i=1..n ti and s0 =
∧∧∧

i=1..n si.Adapting the ase for β-redution in the proof of the Subjet Redution theoremis easy.The last thing to hange is the onstrution of the universal model (Setion 6.7and Setion 6.8). We re-de�ne EfD as C +D2+Pcf(D)×Pf (D) where Pcf denotesthe restrition of the powerset to o�nite subsets. The terms of the universal modelare now generated by the following grammar:
d ::= c | (d, d) | ({d, . . . , d}, {d, . . . , d})The prediate (d : t) used to de�ne the set-theoreti interpretation J_K0 is hangedwith:

(({d1, . . . , dn}, {d
′
1, . . . , d

′
m}) : t1→→→t2) = ∀i. ¬(di : t1) ∧ ∀j. (d′j : t2)Reeived May 2006; revised July 2007; aepted January 2008
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