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2 · Alain Fris
h et al.may be a hard task. A solution to this problem was given by Haruo Hosoya andBenjamin Pier
e [Hosoya and Pier
e 2001; Hosoya 2001; Hosoya and Pier
e. 2003℄with the work on XDu
e. The key idea is that in order to de�ne the subtyping rela-tion semanti
ally one does not need to start from a model of the whole language: amodel of the types su�
es. In parti
ular Hosoya and Pier
e take as their model oftypes the set of values of the language. Their notion of model 
annot 
apture fun
-tional values (their sets of values are regular languages whi
h, as it is well known,are not 
losed with respe
t to fun
tional spa
es). On the one hand, the resultingtype system is poor sin
e it la
ks fun
tion types. On the other hand, it manages tointegrate union, produ
t and re
ursive types and still keep the presentation of thesubtyping relation and of the whole type system quite simple.In a previous work [Fris
h et al. 2002; Fris
h 2004℄ we extended the work onXDu
e and re-framed it in a more general setting: we showed a te
hnique to de�nesemanti
 subtyping in the presen
e of a ri
h type system in
luding fun
tion types,but also arbitrary Boolean 
ombinations (union, interse
tion, and negation types)and in the presen
e of lately bound overloaded fun
tions and type-based patternmat
hing. The aim of [Fris
h et al. 2002; Fris
h 2004℄ was to provide a theoreti
alfoundation on the top of whi
h to build the language CDu
e [Benzaken et al. 2003℄,an XML-oriented transformation language. The key theoreti
al 
ontribution of thework is a new approa
h to de�ne semanti
 subtyping when straightforward set-theoreti
 interpretation does not work, in parti
ular for arrow types. Here we fo
usand expand on this aspe
t of the work and we get rid of many features (e.g. patternmat
hing and pattern variable type inferen
e) whi
h are not dire
tly related to thetreatment of subtyping.The des
ription of a general te
hnique to extend semanti
 subtyping to generaltypes systems with arrow and 
omplete Boolean 
ombinator types is just one wayto read our work, and it is the one we de
ided to emphasise in this presentation.However it is worth mentioning that there exist at least two other readings for theresults and te
hniques presented here.A �rst alternative reading is to 
onsider this work as a resear
h on the de�nition ofa general purpose higher-order XML transformation language: indeed, this was theinitial motivation of [Fris
h et al. 2002; Fris
h 2004℄ and the theoreti
al work donethere 
onstitutes the fundamental basis for the de�nition and the implementationof the XML transformation language CDu
e.A se
ond way of understanding this work is as a quest for the generalisation oflately bound overloaded fun
tions to interse
tion types. The intuition that over-loaded fun
tions should be typed by interse
tion types was always felt but neverfully formalised or understood. On the one hand we had the longstanding resear
hon interse
tion types with the seminal works by the Turin resear
h group on Curry-style typed lambda 
al
ulus [Barendregt et al. 1983; Coppo and Dezani-Cian
aglini1980℄ (and later pursued in Chur
h-style by John Reynolds' work on 
oherent over-loading and the language Forsythe [Reynolds 1991; 1996℄). However fun
tions withinterse
tion types had a uniform behaviour, in the sense that even if they workedon arguments of di�erent types they always exe
uted the same 
ode for all of thesetypes. So fun
tions with interse
tion types looked 
loser to �nitely parametri
 (inthe sense of Reynolds [Reynolds 1983℄) polymorphi
 fun
tions (in whi
h we enu-Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti
 Subtyping · 3merate the possible input types) that 
annot re
onstru
t values of the (intuitive)�nite range parametri
 type1, rather than overloaded fun
tions whi
h are able todis
riminate on the type of the argument, exe
ute a di�erent 
ode for ea
h di�erenttype and, as su
h, (re-)
onstru
t values of the type at issue. On the other handthere was the resear
h on overloaded fun
tions as used in programming languageswhi
h a

ounted for fun
tions formed by di�erent pie
es of 
ode sele
ted a

ordingto the type of the argument the fun
tion is applied to. However, even if the typesof these fun
tions are apparently 
lose to interse
tion types, they never had the set-theoreti
 intuition of interse
tions. So for example in the λ&-
al
ulus [Castagnaet al. 1995℄ overloaded fun
tions have types that are 
hara
terised by the same sub-typing relation as interse
tion types, but they di�er from the latter by the need ofspe
ial formation rules that have no reasonable 
ounterpart in interse
tion types.The overloaded fun
tions de�ned here and, even more, those de�ned in [Fris
het al. 2002℄ �nally re
on
ile the two approa
hes: they are typed by interse
tiontypes (with a 
lassi
al/set-theoreti
 interpretation) and their de�nitions may in-termingle 
ode shared by all possible input types (parametri
 
ode) with pie
es of
ode that are spe
i�
 to only some parti
ular input types (ad ho
 
ode). Thereforethey ni
ely integrate both programming styles.Finally it is important to stress that although here we deploy our 
onstru
tionfor a λ-
al
ulus with higher-order fun
tions, the te
hnique is quite general and 
anbe used mostly un
hanged for quite di�erent paradigms, as for instan
e it is donein [Castagna et al. 2005; Castagna et al. 2007℄ for the π-
al
ulus.Plan of the arti
le.. The presentation is stru
tured in four parts:(1) In the �rst part (Se
tion 2) we lengthy dis
uss the main ideas, the underlyingintuitions, and the logi
al entailment of the whole approa
h.(2) In the se
ond part (Se
tions 3�5) we su

in
tly and pre
isely de�ne the sys-tem: the 
al
ulus and its typing relation (Se
tion 3), the subtyping relation(Se
tion 4), and their properties (Se
tion 5).(3) The third part (Se
tion 6) presents the te
hni
al details of the properties statedin the se
ond part. It 
an be skipped in the �rst reading.(4) The last part (Se
tions 7�9) explains those intuitions and details that 
ouldnot be given in the �rst part sin
e their explanation required the te
hni
aldevelopment (Se
tion 7), it dis
usses related work (Se
tion 8), and hints toother work based on the material presented here together with some resultsthat 
on�rm the robustness of our approa
h (Se
tion 9).2. OVERVIEW OF THE APPROACHWhen dealing with synta
ti
 subtyping one usually pro
eeds as follows. First, onede�nes a language, then, somewhat independently, the set of (synta
ti
) types and asubtyping relation on this set. This relation is de�ned axiomati
ally, in an indu
tive(or 
o-indu
tive, in 
ase of re
ursive types) way. The type system, 
onsisting of
1As a universally quanti�ed se
ond order type 
an be interpreted as a mapping from types to types,so a �nite interse
tion of arrow types 
an be seen as point-wise de�nition of a �nite mapping fromtypes to types. This is just an intuitive analogy: this parti
ular use of interse
tion types evokesthe perfume of parametri
ity but must not be taken stri
tu senso.Journal of the ACM, Vol. V, No. N, Month 20YY.



4 · Alain Fris
h et al.the set of types and of the subtyping relation, is 
oupled to the language by atyping relation, usually de�ned via some typing rules by indu
tion on the termsof the language and possibly a subsumption rule that a

ounts for subtyping. Themeaning of types is only given by the rules de�ning the subtyping and the typingrelations.The semanti
 subtyping approa
h des
ribed here diverges from the above onlyfor the de�nition of the subtyping relation. Instead of using a set of dedu
tion rules,this relation is de�ned semanti
ally: we do it by de�ning a set-theoreti
 model ofthe types and by stating that one type is subtype of another if the interpretation ofthe former is a subset of the interpretation of the latter. As for synta
ti
 subtyping,the de�nition is parametri
 in the set of base types and their subtyping relation (inour 
ase, their interpretation).2.1 A �ve steps re
ipeIn prin
iple, the pro
ess of de�ning semanti
 subtyping 
an be roughly summarisedin the following �ve steps:(1) Take a bun
h of type 
onstru
tors (e.g., →, ×, 
h , . . . ) and extend the typealgebra with the following Boolean 
ombinators : union ∨∨∨, interse
tion ∧∧∧, andnegation ¬¬¬, yielding a type algebra T .(2) Give a set-theoreti
 model of the type algebra, namely de�ne a fun
tion J KD :
T → P(D), for some domain D (where P(D) denotes the power-set of D). Insu
h a model, the 
ombinators must be interpreted in a set-theoreti
 way (thatis, Js∧∧∧tKD = JsKD ∩ JtKD, Js∨∨∨tKD = JsKD ∪ JtKD, and J¬¬¬tKD = D \ JtKD), andthe de�nition of the model must 
apture the essen
e of the type 
onstru
tors.There might be several models, and ea
h of them indu
es a spe
i�
 subtypingrelation on the type algebra. We only need to prove that there exists at leastone model and then pi
k one that we 
all the bootstrap model . If its asso
iatedinterpretation fun
tion is J K

B
, then it indu
es the following subtyping relation:

s ≤B t
def
⇐⇒ JsK

B
⊆ JtK

B
(1)(3) Now that we de�ned a subtyping relation for our types, �nd a subtyping algo-rithm that de
ides (or semi-de
ides) the relation. This step is not mandatorybut highly advisable if we want to use our types in pra
ti
e.(4) Now that we have a (hopefully) suitable subtyping relation available, we 
anfo
us on the language itself, 
onsider its typing rules, use the new subtypingrelation to type the terms of the language, and dedu
e Γ ⊢B e : t. In parti
ularthis means to use in the subsumption rule the bootstrap subtyping relation ≤Bwe de�ned in step 2.(5) The typing judgement for the language now allows us to de�ne a new natu-ral set-theoreti
 interpretation of types, the one based on values JtK

V
= {v ∈

V | ⊢B v : t}, and then de�ne a �new� subtyping relation as we did in (1),namely s ≤V t
def
⇔ JsK

V
⊆ JtK

V
. The new relation ≤V might be di�erent from

≤B we started from. However, if the de�nitions of the model, of the language,and of the typing rules have been 
arefully 
hosen, then the two subtyping re-lations 
oin
ideJournal of the ACM, Vol. V, No. N, Month 20YY.
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s ≤B t ⇐⇒ s ≤V tand this 
loses the 
ir
ularity. Of 
ourse, this does not imply that the de�ni-tions are �valid� in any formal sense, only that they are mutually 
oherent. Westill need to 
he
k type soundness. In this paper, we do this with standardsynta
ti
al te
hniques (subje
t redu
tion and progress).While the �ve steps above outline a ni
e framework in whi
h to �t and understandwhat follows, in pra
ti
e, however, the starting point never is the model of types butthe 
al
ulus: in parti
ular one always starts from the 
al
ulus and its values, andtries to slightly modify these so that the values outline some model that 
an thenbe formalised. This is what we also do here: while we follow the �ve-steps pro
essabove to give, in the rest of this se
tion, an overview of the approa
h, in Se
tion 3 weintrodu
e a λ-
al
ulus with overloaded fun
tions and dynami
 dispat
h, in Se
tion 4we introdu
e a model to semanti
ally de�ne a subtyping relation inspired from theprevious 
al
ulus, and in Se
tion 5 dis
uss the main results, namely, the soundnessof the typing relation, the 
orresponden
e between the values of Se
tion 3 and themodel of Se
tion 4, and the de
idability of the various relations.2.2 Advantages of semanti
 subtypingThe semanti
 approa
h is more te
hni
al and 
onstraining, and this may explainwhy it has obtained less attention than synta
ti
 subtyping. However it presentsseveral advantages:(1) When type 
onstru
tors have a natural interpretation in the model, the subtyp-ing relation is by de�nition 
omplete with respe
t to its intuitive interpretationas set in
lusion: when t ≤ s does not hold, it is possible to exhibit an elementof the model whi
h is in the interpretation of t and not of s, even in pres-en
e of arrow types (this property is used in CDu
e to return informative errormessages to the programmer); in the synta
ti
 approa
h one 
an just say thatthe formal system does not prove t ≤ s, and there may be no 
lear 
riterionto assert that some meaningful additional rules would not allow the systemto prove it. This argument is parti
ularly important with a ri
h type alge-bra, where type 
onstru
tors intera
t in non trivial ways; for instan
e, when
onsidering arrow, interse
tion and union types, one must take into a

ount�i.e., introdu
e rules for� many distributivity relations su
h as, for instan
e2,

(t1 ∨ t2) → s ≃ (t1 → s) ∧ (t2 → s). Forgetting any of these rules yields a typesystem that, although sound, does not mat
h (that is, it is not 
omplete withrespe
t to) the intuitive semanti
s of types.(2) In the synta
ti
 approa
h deriving a subtyping algorithm requires a strongintuition of the relation de�ned by the formal system, while in the semanti
approa
h it is a simple matter of �arithmeti
�: it simply su�
es to use theinterpretation of types and well-know Boolean algebra laws to de
ompose sub-typing on simpler types (as we show in Se
tion 6.2). Furthermore, as mostof the formal e�ort is done with the semanti
 de�nition of subtyping, studyingvariations of the algorithm (e.g., optimisations or di�erent rules) turns out to be
2We write s ≃ t as a shorthand for s ≤ t and s ≥ t.Journal of the ACM, Vol. V, No. N, Month 20YY.



6 · Alain Fris
h et al.mu
h simpler (this is 
ommon pra
ti
e in database theory where, for example,optimisations are derived dire
tly from the algebrai
 model of data).(3) While the synta
ti
 approa
h requires tedious and error-prone proofs of formalproperties, in the semanti
 approa
h many of them 
ome for free: for instan
e,the transitivity of the subtyping relation is trivial (as set-
ontainment is tran-sitive), and this makes proofs su
h as 
ut elimination or transitivity admissi-bility pointless. Other examples of properties that 
ome easily from a semanti
de�nition are the varian
e of type 
onstru
tors, and distributivity laws (e.g.
t1×××(t2∨∨∨t3) ≃ (t1×××t2)∨∨∨(t1×××t3)).Although these properties look quite appealing, the te
hni
al details of the approa
hhinder its development: in the semanti
 approa
h, one must be very 
areful notto introdu
e any 
ir
ularity in the de�nitions. For instan
e, if the type systemdepends on the subtyping relation�as this is generally the 
ase�one 
annot use itto de�ne the semanti
 interpretation whi
h must thus be given independently fromthe typing relation; also, usually the model 
orresponds to an untyped denotationalsemanti
s, where types are interpreted by stru
tures in whi
h negative types eitherdo not have an immediate interpretation (for instan
e, the 
omplement of ideals isnot an ideal, therefore one should 
onsider to mix ideals with 
o-ideals), or simplyare never 
onsidered (one of the JACM reviewers suggests that this may be for�ideologi
al reasons 
oming from proof theory and intuitionism� rather than forte
hni
al problems). For these reasons all the semanti
 approa
hes to subtypingprevious to our work presented some limitations: no higher-order fun
tions, no
omplement types, and so on. The main 
ontribution of our work is the developmentof a formal framework that over
omes these limitations.Ex
ursus. The reader should not 
onfuse our resear
h with the long-standing resear
h on set-theoreti
 models of subtyping. In that 
aseone starts from a synta
ti
ally (i.e. axiomati
ally) de�ned subtypingrelation and seeks a set-theoreti
 model where this relation is interpretedas in
lusion. Our approa
h is the opposite: instead of starting from asubtyping relation to arrive to a model, we start by de�ning a model inorder to arrive at a subtyping relation (and eventually verify that thisrelation is 
onsistent with our language). Thus in our approa
h typeshave a strong substan
e even before introdu
ing the typing relation.2.3 A model of typesTo de�ne semanti
 subtyping we need a set-theoreti
 model of types. The sour
eof most of (if not all) the problems 
omes from the fa
t that this model is usuallyde�ned by starting from a model of the terms of the language. That is, we 
on-sider a denotational interpretation fun
tion that maps ea
h term of the languageinto an element of a semanti
 domain and we use this interpretation to de�ne theinterpretation of the types (typi
ally�but not ne
essary, e.g. PER models [Aspertiand Longo 1991℄�as the image of the interpretation of all terms of a given type).If we 
onsider fun
tional types then in order to interpret fun
tional term appli-
ation we have to interpret the duality of fun
tions as terms and as fun
tions onterms. This yields the need to solve 
ompli
ated re
ursive domain equations thatJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti
 Subtyping · 7hardly 
ombines with a set-theoreti
 interpretation of types, when
e the introdu
-tion of restri
tions in the de�nition of semanti
 subtyping (e.g. no fun
tion types,no negation types, et
 . . . ).Note however that in order to de�ne semanti
 subtyping all we need is a set-theoreti
 model of types . The 
onstru
tion works even if we do not have a modelof terms. To push it to the extreme, in order to de�ne subtyping we do not needterms at all, sin
e we 
ould imagine to de�ne type in
lusion for types independentlyfrom the language we want to use these types for. More plainly, the de�nition of asemanti
 subtyping relation needs neither an interpretation for appli
ations (thatis an appli
ative model) nor, thus, the solution of 
ompli
ated domain equations.The key idea to generalise semanti
 subtyping is then to disso
iate the model oftypes from the model of terms and de�ne the former independently from the latter.In other words, the interpretation of types must not for
edly be based on, or relatedto an interpretation of terms (and a
tually in the same 
on
rete examples we willgive we interpret types in stru
tures that 
annot be used for an interpretation ofterms), and as a matter of fa
t we do not need an interpretation of terms even toexist for the semanti
 subtyping 
onstru
tion to go through3.2.4 Types as sets of valuesNevertheless, to ensure type safety (i.e. well-typed programs 
annot go wrong) themeaning of types has to be somewhat 
orrelated with the language. A 
lassi
alsolution, that belongs to the types folklore4 is to interpret types as sets of values ,that is, as the results of well-typed 
omputations in the language. More formally,the values of a typed language are all the terms that are well-typed, 
losed, and inweak head-normal form. So the idea is that in order to provide an interpretationof types we do not need an interpretation of all terms of the language (or of justthe well-typed ones): the interpretation of the values of the language su�
es tode�ne an interpretation of types. This is mu
h an easier task: sin
e a 
losedappli
ation usually denotes a redex, then by restri
ting to the sole values we avoidthe need to interpret appli
ation and, therefore, also the need to solve 
ompli
ateddomain equations. This is the solution adopted by XDu
e, where values are XMLdo
uments and types are sets of do
uments (more pre
isely, regular languages ofdo
uments).But if we 
onsider a language with arrow types, that is a language with higherorder fun
tions, then the appli
ations 
ome ba
k again: arrow types must be in-terpreted as sets of fun
tion values, that is, as sets of well-typed 
losed lambdaabstra
tions, and appli
ations may o

ur in the body of these abstra
tions. Hereis where XDu
e stops and it is the reason why it does not in
lude arrow types.
3As Pierre-Louis Curien suggested, the 
onstru
tion we propose is a pied de nez to (it 
o
ks asnook at) denotational semanti
s, as it uses a semanti
 
onstru
tion to de�ne a language for whi
h,possibly, no denotational semanti
s is known.
4A survey on the �Types� mailing list tra
es this solution ba
k to Bertrand Russell and AlfredWhitehead's Prin
ipia Mathemati
a. Closer to our interests it seems that the idea independentlyappeared in the late sixties early seventies and later ba
k again in seminal works by Roger Hindley,Per Martin-Löf, Ed Lowry, John Reynolds, Niklaus Wirth and probably others (many thanks tothe many �typers� who answered to our survey). Journal of the ACM, Vol. V, No. N, Month 20YY.



8 · Alain Fris
h et al.2.5 A 
ir
ularity to breakIntrodu
ing arrow types is then problemati
 be
ause it slips appli
ations ba
k againin the interpretation of types. However this does not mean that we need a semanti
interpretation for appli
ation, it just implies that we must de�ne how appli
ation istyped . Indeed, fun
tional values are well-typed lambda abstra
tions, so to interpretfun
tional types we must be able to type lambda abstra
tions and in parti
ular totype the appli
ations that o

ur in their body. Now this is not an easy task in our
ontext: in the absen
e of higher order fun
tions the set of values inhabiting type
onstru
tors su
h as produ
ts or re
ords 
an be indu
tively de�ned from basi
 typeswithout resorting to any typing relation (this is why the XDu
e approa
h workssmoothly). With the arrow type 
onstru
tor, instead, this 
an be done only by usinga typing relation, and this yields to the 
ir
ularity we hinted at in the introdu
tionand that is shown in Figure 1: in order to de�ne the subtyping relation we needan interpretation of the types of the language; for this we have to de�ne whi
hare the values of an arrow type; this needs that we de�ne the typing relation forappli
ations, whi
h in turns needs the de�nition of the subtyping relation.
Typing
relationvalues

Well−typed

Subtyping
relation

Fig. 1. Cir
ularity
Thus, if we want to de�ne the semanti
 subtyping of ar-row types we must �nd a way the avoid this 
ir
ularity.The simplest way to avoid it is to break it, and the de-velopment we did so far 
learly suggests where to do so.We always said that to de�ne (semanti
) subtyping wemust have a model of types; it is also 
lear that the typ-ing relation must use subtyping; but, on the 
ontrary,it is not stri
tly ne
essary for our model to be based onthe interpretation of values, this is just 
onvenient as itties the types with the language the types are intendedfor. This is therefore the weakest link and we 
an breakit. So the idea is to start from a model (of the types)de�ned independently (but not too mu
h) from the lan-guage the types are intended for (and therefore independently from its values), andthen from that de�ne the rest: subtyping, typing, set of values. We will then showhow to relate the initial model to the obtained language and re
over the initial�types as set of values� interpretation: namely, we will �
lose the 
ir
le�.2.6 Set-theoreti
 modelsLet us then show with more details how we shall pro
eed. We do not need to de�nea parti
ular language, the de�nition of types will su�
e. Here, we assume thattypes are de�ned by the following syntax:

t ::= 0 | 1 | t→→→t | t×××t | ¬¬¬t | t∨∨∨t | t∧∧∧twhere 0 and 1 respe
tively 
orrespond to the empty and universal types (these aresometimes denoted by the pair ⊥, ⊤ or Bottom, Top). The formal de�nition ofthe type algebra, whi
h in
ludes re
ursive types and basi
 types, will be given inSe
tion 3.1.The se
ond step is to de�ne pre
isely what a set-theoreti
 model for these typesis. As Hindley and Longo [Hindley and Longo 1980℄ give some general 
onditionsJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti
 Subtyping · 9that 
hara
terise models of λ-
al
ulus, so here we want to give the 
onditions thatan interpretation fun
tion must satisfy in order to 
hara
terise a set-theoreti
 modelof our types. So let T be the set of types, D some set, and J_K an interpretationfun
tion from T to P(D). The 
onditions that J_K must satisfy to de�ne a set-theoreti
 model are mostly straightforward, namely:(1) Jt1∨∨∨t2K = Jt1K ∪ Jt2K(2) Jt1∧∧∧t2K = Jt1K ∩ Jt2K(3) J¬¬¬tK = D\JtK(4) J1K = D(5) J0K = ∅(6) Jt×××sK = JtK × JsK(7∗) Jt→→→sK = ???The �rst six 
onditions 
onvey the intuition that our model is set theoreti
:so the interse
tion of types must be interpreted as set interse
tion, the union oftypes as set-theoreti
 union and so on (the sixth 
ondition requires some 
losureproperties on D but we prefer not to enter in su
h a level of detail at this point of ourpresentation). But the de�nition is not 
omplete yet as we still have to establish theseventh 
ondition (highlighted by a ∗) that 
onstrains the interpretation of arrowtypes. This 
ondition is more 
ompli
ated. Again it must 
onvey the intuition thatthe interpretation is set-theoreti
, but while the �rst six 
onditions are languageindependent, this 
ondition strongly depends on the language and in parti
ular onthe kind of fun
tions we want to implement in our language. We give detailedexamples of this in [Fris
h 2004℄. The set-theoreti
 intuition we have of fun
tionspa
es is that a fun
tion is of type t→→→s if whenever applied to a value of type t itreturns a result of type s. Intuitively, if we interpret fun
tions as binary relations on
D, then Jt→→→sK is the set of binary relations in whi
h if the �rst proje
tion is in (theinterpretation of) t, then the se
ond proje
tion is in s, namely {f ⊆ D2 | ∀(d1, d2) ∈

f. d1 ∈ JtK ⇒ d2 ∈ JsK }. Note that this set 
an also be written P(JtK × JsK), wherethe overline denotes set 
omplement (with respe
t to D or D2). If the language isexpressive enough, we 
an do as if every binary relation in this set was an elementof Jt→→→sK; thus, we would like to say that the seventh 
ondition is:
Jt→→→sK = P(JtK × JsK) (2)But this is 
ompletely meaningless. First, te
hni
ally, this would imply that

P(D2) ⊆ D, whi
h is impossible for 
ardinality reasons. Also, remember that wewant eventually to re-interpret types as sets of values of the language, and fun
tionsin the language are not binary relations (they are synta
ti
 obje
ts). However whatreally matters is not the exa
t mathemati
al nature of the elements of D, but onlythe relations they 
reate between types. The idea then is to do as if the above
ondition held.Sin
e this point is 
entral to our model, let us explain it di�erently. Re
allthat the only reason why we want to a

urately state what the set-theoreti
 modelof types is, is to pre
isely de�ne the subtyping relation for synta
ti
 types. Inother words, we do not de�ne an interpretation of types in order to formally andJournal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.mathemati
ally state what the synta
ti
 types mean but, more simply, we de�ne itin order to state how they are related. So, even if we would like to say that a type
t→→→s must be interpreted in the model as P(JtK × JsK) as stated by (2), for whatit 
on
erns the goal we are aiming at, it is enough to require that a model mustinterpret fun
tional types so that the indu
ed subtyping relation is the same as theone the 
ondition (2) would indu
e, that is:

Jt1→→→s1K ⊆ Jt2→→→s2K ⇐⇒ P(Jt1K × Js1K) ⊆ P(Jt2K × Js2K)and similarly for any Boolean 
ombination of arrow types.Formally, we asso
iate (see De�nition 4.3 in Se
tion 4.2) to J_K an extensionalinterpretation E(_) that behaves as J_K ex
ept for arrow types, for whi
h we usethe 
ondition above as de�nition:E(t→→→s) = P(JtK × JsK)Note that we use J_K in the right-hand side of this equation, that is, we onlyre-interpret top-level arrow types. Now we 
an express the fa
t that J_K behaves(from the point of view of subtyping) as if fun
tions were binary relations. This isobtained by writing the missing seventh 
ondition, not in the form of (7∗), but asfollows:(7) JtK = ∅ ⇐⇒ E(t) = ∅or, equivalently, Jt1K ⊆ Jt2K ⇐⇒ E(t1) ⊆ E(t2).5To put it otherwise, if we wanted an interpretation J_K of the types that werefaithful with respe
t to the semanti
s of the language, then we should require forall t that JtK = E(t). But for 
ardinality reasons this is impossible in a set-theoreti
framework. However we do not need su
h a strong 
onstraint on the de�nition of
J_K sin
e all we ask to J_K is to 
hara
terise the 
ontainment of types, and to thatend it su�
es to 
hara
terise the zeros of J_K, sin
e

s ≤ t ⇐⇒ JsK ⊆ JtK ⇐⇒ JsK ∩ JtK = ∅ ⇐⇒ Js∧∧∧¬¬¬tK = ∅Therefore, instead of asking that J_K and E(_) 
oin
ide on all points, we require aweaker 
onstraint, namely that they have the same zeros:
JtK = ∅ ⇐⇒ E(t) = ∅This is the essen
e of our de�nition of models of the type algebra (De�nition 4.4 inSe
tion 4.2).We said that the above seventh 
ondition (a
tually, the de�nition of the exten-sional interpretation) depends on the language the type system is intended for.Previous work [Fris
h 2004℄ shows di�erent variations of this 
onditions to mat
hdi�erent sets of de�nable transformations. However, we 
an already see that the
ondition above a

ounts for languages in whi
h fun
tions possibly are(1) Non-deterministi
: sin
e the 
ondition does not prevent the interpretation ofa fun
tion spa
e to 
ontain a relation with two pairs (d, d1) and (d, d2) with

d1 6= d2.
5Indeed, Jt1K ⊆ Jt2K ⇐⇒ Jt1K \ Jt2K = ∅ ⇐⇒ Jt1∧∧∧¬¬¬t2K = ∅ ⇐⇒ E(t1∧∧∧¬¬¬t2) = ∅ ⇐⇒E(t1) \ E(t2) = ∅ ⇐⇒ E(t1) ⊆ E(t2).Journal of the ACM, Vol. V, No. N, Month 20YY.
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 Subtyping · 11(2) Non-terminating : sin
e the 
ondition does not for
e a relation in Jt→→→sK to haveas �rst proje
tion the whole JtK. A di�erent reason for this is that every arrowtype is inhabited (note indeed that the empty set belongs to the interpretationof every arrow type), so in parti
ular are all the types of the form t→→→0; now,all the fun
tions in su
h types must be always non-terminating on their domain(if they returned a value this would inhabit 0).(3) Overloaded : here, by overloading, we mean fun
tions that 
an be applied tomany di�erent types, and whose results' type 
an depend on the type of theargument.6 This is subtler than the two previous 
ases as it is a 
onsequen
eof the fa
t that 
ondition does not for
e J(t1∨∨∨t2)→→→(s1∧∧∧s2)K to be equal to
J(t1→→→s1)∧∧∧(t2→→→s2)K, (the equality instead holds in λ-
al
ulus with union andinterse
tion types [Barbanera et al. 1995℄), but just the former to be in
ludedin the latter. Imagine indeed that the language at issue does not allow theprogrammer to de�ne overloaded fun
tions. Then it may not be possible tode�ne fun
tions that distinguish the types of their argument, and in parti
ularto have a fun
tion that when applied to an argument of type t1 returns a resultin s1 while returning a (possibly di�erent) s2 result for t2 arguments. Thereforethe only fun
tions in (t1→→→s1)∧∧∧(t2→→→s2) are those in (t1∨∨∨t2)→→→(s1∧∧∧s2) (this pointis dis
ussed thoroughly in Se
tion 4.5 of our related survey [Castagna 2005℄).2.7 Bootstrapping the de�nitionNow that we have de�ned what a set-theoreti
 model for our types is, we 
an 
hoosea parti
ular one that we use to de�ne the rest of the system. Suppose that thereexists at least one pair (D, J_K) that satis�es the 
onditions of set-theoreti
 model,and 
hoose any su
h pair, no matter whi
h one. Let us 
all this model the bootstrapmodel . This bootstrap model de�nes a parti
ular subtyping relation on our set oftypes T :

s ≤ t ⇐⇒ JsK ⊆ JtKWe 
an then pi
k any language that uses the types in T (and whose semanti
s
onforms with the intuition underlying the model 
ondition on fun
tion types),de�ne its typing rules and use in the subsumption rule the subtyping relation ≤we have just de�ned. We write Γ ⊢ e : t for the typing judgement of the language.In this paper, we will 
onsider a λ-
al
ulus with overloaded fun
tions and dynami
type-dispat
h. See Se
tion 3.1 for the syntax of the 
al
ulus, Se
tion 3.3 for itstype system and Se
tion 3.2 for its semanti
s (whi
h depends on the type systembe
ause of the dynami
 type-dispat
h 
onstru
tion).2.8 Closing the 
ir
leIn order to obtain type-safety for our 
al
ulus, we want the type system to enjoyproperties su
h as subje
t redu
tion (Theorem 5.1) and progress (Theorem 5.2)stated in Se
tion 5.1. Be
ause of the subsumption rule in the type system, this 
anonly be obtained if our de�nition of set-theoreti
 models is meaningful with respe
t
6This use of the term �overloading� is pretty wide sin
e it in
ludes for instan
e polymorphi
fun
tions. In this dis
ussion, a non-overloaded fun
tion should be thought as a fun
tion that
omes with expli
it input and output types. Journal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.to the operational semanti
s of our 
al
ulus. This is a �rst sanity-
he
k for ournotion of model.But, on
e type-safety has been established, there is another important question:what are the relations between the bootstrap model and the 
al
ulus? And inparti
ular, what is the relation between the bootstrap model and the values of the
al
ulus? Have we lost all the intuition underlying the �types as sets of values�interpretation?To answer these questions, we 
onsider a new interpretation of types as sets ofvalues in the 
al
ulus:
JtK

V
= {v | ⊢ v : t}A se
ond sanity-
he
k for our notion of model is then to require that this in-terpretation J_K

V
is a model. If this is the 
ase, we 
an use it to de�ne a newsubtyping relation on T :

s ≤V t ⇐⇒ JsK
V

⊆ JtK
VWe 
ould imagine to start again the pro
ess, that is to use this subtyping relationin the subsumption rule of our language, and use the resulting sets of values tode�ne yet another subtyping relation and so on. But this is not ne
essary as thepro
ess has already 
onverged. This is stated by one of the 
entral results of ourwork (Theorem 5.5 in Se
tion 5.2):

s ≤ t ⇐⇒ s ≤V tthat is, the subtyping relation indu
ed by the bootstrap model already de�nes thesubtyping relation of the �types as sets of values� model of the resulting 
al
ulus.We have 
losed the 
ir
le we broke.3. THE CALCULUSIn this se
tion, we de�ne formally the syntax of types and expressions in our 
al-
ulus (Se
tion 3.1), the operational semanti
s (Se
tion 3.2) and the type system(Se
tion 3.3). A type-
he
king algorithm will be presented in Se
tion 6.12.The semanti
s a
tually depends on the type-system, whi
h in turn depends on asubtyping relation to be de�ned (next se
tion). As a 
onsequen
e, we 
onsider herethe subtyping relation as a parameter of the de�nitions of the type system and ofthe semanti
s.3.1 SyntaxExpressions. To de�ne the 
al
ulus, we 
hoose a set of 
onstants C ranged bythe meta-variable c (they will be elements of basi
 types).The terms of the 
al
ulus are 
alled expressions and are de�ned by the followingJournal of the ACM, Vol. V, No. N, Month 20YY.
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e ::= c 
onstant
| x variable
| (e, e) pair
| πi(e) proje
tion (i ∈ {1, 2})
| µf(t→→→t; . . . ; t→→→t).λx.e abstra
tion
| e e appli
ation
| (x = e ∈ t ? e|e) dynami
 type dispat
h
| rnd(t) non-deterministi
 
hoi
ewhere t ranges over types, de�ned in the next paragraph.We write E for the set of expressions. The syntax for the 
al
ulus deserves few
omments. We introdu
e an expli
it 
onstru
tion for re
ursive fun
tions, whi
h
ombines λ-abstra
tion and a �x-point operator. The reason is that we want toexpress non-terminating expressions, but still restri
t re
ursion to fun
tions only.The identi�ers f and x a
t as binders in the body of the fun
tion. The λ-abstra
tion
omes with an non-empty sequen
e of fun
tion types (we 
all it the interfa
e of thefun
tion): if more than one type is given, we are in the presen
e of an overloadedfun
tion. As we will see later in the type system, we adopt pres
riptive Chur
h-style for λ-abstra
tions: the types assigned to su
h expressions 
an be read fromtheir signature, without 
onsidering their body. The reason, besides making type-
he
king feasible, is that be
ause (
losed and well-typed) λ-abstra
tions are values,they 
an be subje
t to dynami
 type dispat
h and we do not want to rely on thewhole type system to de
ide whether a λ-abstra
tion has some type or not.The non-deterministi
 
hoi
e 
onstru
tion rnd(t) pi
ks an arbitrary expression oftype t. We introdu
ed this operator in the 
al
ulus in order to demonstrate subtletyping issues 
oming from non-determinism. This operator 
an be used to modelinternal or external non determinism su
h as inputs or side e�e
ts.The only data 
onstru
tor in the 
al
ulus is the pair. General tuples and taggedvalues 
an be en
oded by nested pairs and 
onstants. Similarly, Appendix A.1shows how to en
ode disjoint sums with pairs and 
onstants.Types. Types are essentially those introdu
ed in Se
tion 2.6 (modulo Booleanequivalen
e) to whi
h we add basi
 types (the types of 
onstant expressions). Inorder to simplify the presentation of re
ursive types, we are going to 
onsider po-tentially in�nite regular terms produ
ed by the following signature:

t ::= b basi
 type
| t×××t produ
t type
| t→→→t fun
tion type
| t∨∨∨t union type
| ¬¬¬t 
omplement type
| 0 empty typeBy regular, we mean that terms have only but a �nite number of di�erent sub-terms. The meta-variable b ranges over a �xed set of basi
 types. We write t1\\\t2as an abbreviation for t1∧∧∧¬¬¬t2, t1∧∧∧t2 as an abbreviation for ¬¬¬(¬¬¬t1 ∨ ¬¬¬t2), and 1as an abbreviation for ¬¬¬0. We will 
all atom the immediate appli
ations of typeJournal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.
onstru
tors: basi
 types, produ
t types, fun
tion types (these are the �atoms� forBoolean 
ombinators). Sin
e we want types to denote sets, we need to impose some
onstraints to avoid ill-formed types su
h as a solution to t = t∨∨∨t (whi
h does not
arry any information about the set denoted by the type) or to t = ¬¬¬t (whi
h 
annotrepresent any set). Namely, we say that a term is a type if it does not 
ontain anyin�nite bran
h without an atom. Let us 
all T the set of types.The 
onditions above say that the binary relation ⊲ ⊆ T 2 de�ned by t1∨∨∨t2 ⊲ ti,
¬¬¬t⊲t is Noetherian (that is, strongly normalizing). This gives an indu
tion prin
ipleon T that we will use without any further expli
it referen
e to the relation ⊲.3.2 Operational semanti
sBe
ause of the dynami
 type dispat
h, the semanti
s of the 
al
ulus depends on itstype system. For now, we simply assume that a relation between expressions andtypes, written ⊢ e : t is given. It will be de�ned in the next se
tion.Definition 3.1. An expression e is a value if it is 
losed (no free variable),well-typed (⊢ e : t for some type t), and produ
ed by the following grammar:

v ::= c | (v, v) | µf(. . .).λx.eWe write V for the set of all values.We de�ne a small-step operational 
all-by-value semanti
s ; for the 
al
ulus.There are four basi
 redu
tion rules (we write e[x1 := e1; x2 := e2; . . .] for theexpression obtained from e by a 
apture-avoiding simultaneous substitution of xiby ei):
ev ; e[f := e′; x := v] if e = µf(. . .).λx.e′

(x = v ∈ t ? e1|e2) ;

{

e1[x := v] if ⊢ v : t
e2[x := v] if ⊢ v : ¬¬¬t

πi(v1, v2) ; virnd(t) ; e if ⊢ e : tThe relation ; is further extended by an indu
tive 
ontext rule:
C[e] ; C[e′] if e ; e′where the notion of (immediate) 
ontext is de�ned by:

C[] ::= ([], e) | (e, [])
| []e | e[]
| (x = [] ∈ t ? e|e) | (x = e ∈ t ? []|e) | (x = e ∈ t ? e|[])
| πi([])
| µf(. . .).λx.[]As usual, a type safety result will be obtained by a 
ombination of two lem-mas: subje
t redu
tion (or type preservation) and progress (
losed and well-typedexpressions whi
h are not values 
an be redu
ed).The redu
tion rule for appli
ation requires the argument to be a value (
all-by-value). In order to understand why, let us 
onsider the appli
ation (µf(t → t×××t; s →

s×××s).λx.(x, x))(rnd(t∨∨∨s)). The type system will assign to the abstra
tion the type
(t→→→t×××t)∧∧∧(s→→→s×××s). A set-theoreti
 reasoning shows that this type is a subtype of
(t∨∨∨s) → ((t×××t)∨∨∨(s×××s)). The type system also assigns to the argument rnd(t∨∨∨s)Journal of the ACM, Vol. V, No. N, Month 20YY.
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 Subtyping · 15the type t∨∨∨s. It will thus also assign the type (t×××t)∨∨∨(s×××s) to the appli
ation. If thesemanti
s permits to redu
e this appli
ation, we would get as a result the expression
(rnd(t∨∨∨s), rnd(t∨∨∨s)) whose most pre
ise stati
 type is (t∨∨∨s)×××(t∨∨∨s). Clearly, thistype is (in general) a stri
t supertype of (t×××t)∨∨∨(s×××s). So, if the semanti
s does notfor
e the argument to be a value in order to redu
e an appli
ation, we 
ould notobtain the subje
t redu
tion lemma.Similarly, the redu
tion rule for proje
tion requires its argument to be a value.To understand why, 
onsider the expression e = π1(e1, e2) where e1 is an expressionof type t1 and e2 is a looping expression of type 0 (e.g. (µf(1 → 0).λx.fx)c). Thetype system will assign the type t1×××0 to e, but in our system t1×××0 is an empty typebe
ause, intuitively, a set-theoreti
 Cartesian produ
t with an empty 
omponent isitself empty. If e 
ould be redu
ed to e1, it would be a violation of type preservation.The same argument applies to the dynami
 type dispat
h. If we allowed to redu
e
(x = e ∈ t ? e1|e2) to e1[x := e] when ⊢ e : t, even if e is not a value, we 
ouldbreak type preservation. Consider for instan
e the 
ase where ⊢ e : 0. In this 
ase,the type system does not 
he
k anything about the bran
hes e1 and e2 (the reasonfor this is explained in details later on) and so e1 
ould be ill-typed. Note thatwhen e is a value, then the dynami
 type dispat
h 
an always be redu
ed. Indeed,be
ause our type 
onne
tives will be interpreted in a set-theoreti
 way, we alwayshave ⊢ v : t or ⊢ v : ¬¬¬t (for any value v and any type t).3.3 Type systemThe semanti
s we just introdu
ed depends on the typing judgment Γ ⊢ e : t where
Γ is a �nite mapping from variables to types (we write ⊢ e : t when Γ is empty).This judgment, in turn, depends on a subtyping relation ≤ between types that weare going to introdu
e later on. For now, we assume it is a parameter of the typesystem.For ea
h 
onstant c, we assume given a basi
 type bc. The rules are:

Γ ⊢ e : t1 t1 ≤ t2
Γ ⊢ e : t2

(subsum)
Γ ⊢ c : bc

(const)
Γ ⊢ x : Γ(x)

(var)

Γ ⊢ e : t1×××t2
Γ ⊢ πi(e) : ti

(proj)
Γ ⊢ e1 : t1 → t2 Γ ⊢ e2 : t1

Γ ⊢ e1e2 : t2
(appl)

t =
∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j) t 6≃ 0
∀i = 1..n.Γ, (f : t), (x : ti) ⊢ e : si

Γ ⊢ µf(t1→→→s1; . . . ; tn→→→sn).λx.e : t
(abstr)

Γ ⊢ e : t0

{

t0 6≤ ¬¬¬t ⇒ Γ, (x : t0∧∧∧t) ⊢ e1 : s
t0 6≤ t ⇒ Γ, (x : t0\\\t) ⊢ e2 : s

Γ ⊢ (x = e ∈ t ? e1|e2) : s
(case)The rule (subsum) 
auses the type system to depend on the subtyping relation toJournal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.be de�ned. The rules (const), (pair), (var), (proj), (rnd), and (appl) are standardor straightforward.The rule (abstr) is a little bit tri
ky. Ea
h arrow type ti→→→si in the fun
tioninterfa
e is interpreted as a 
onstraint to be 
he
ked. The body of the abstra
tion isthus type-
he
ked on
e for ea
h su
h 
onstraint. When 
onsidering the type ti→→→si,the variable x is assumed to have type ti and the body is 
he
ked against type si.Also, the variable f is assumed to have type t, whi
h is also the type given to thewhole fun
tion. Quite intuitively, this type is obtained by taking the interse
tionof all the types ti→→→si. But we also add to this interse
tion any �nite number of
omplement of arrow types, provided the type t does not be
ome empty. This mightsound surprising, but the reason is a
tually simple: we want types to be interpretedas sets of values in su
h a way that Boolean 
onne
tives behave as their set-theoreti

ounterpart. In parti
ular, the union of t and ¬¬¬t must always be equivalent to 1,that is, we need to have the following property: ∀v.∀t.(⊢ v : t) or (⊢ v : ¬¬¬t). Inparti
ular, sin
e a (
losed and well-typed) abstra
tion is value, it must have type
(t→→→s) or type ¬¬¬(t→→→s) for any 
hoi
e of t and s. If (t→→→s) is a supertype of theinterse
tion ∧ ti→→→si, the abstra
tion is known, thanks to the subsumption rule, tohave type (t→→→s). Otherwise, the abstra
tion must have type ¬¬¬(t→→→s), but sin
e we
annot use subsumption to prove it, then we need to provide a way to prove it hastype ¬¬¬(t→→→s). This is why we introdu
e su
h 
omplements of arrow types in therule (abstr). More 
omments about this rule 
an be found in Se
tion 7.3.The rule (case) is easier to read. First, we need to �nd a type t0 for the expres-sion whose result will be dynami
ally type-
he
ked. If this type has a non-emptyinterse
tion with t (t0 6≤ ¬¬¬t), then the �rst bran
h might be used. In this 
ase, inorder for the whole expression to have type s, we need to 
he
k that e1 has also type
s, assuming that x has type t∧∧∧t0. Indeed, at runtime, the variable x will be boundto a value resulting from the evaluation of e0. Be
ause of subje
t redu
tion, thisvalue is ne
essarily of type t0. But in order to type-
he
k e1, we 
an also assumethat the value has type t. If t0 ≤ ¬¬¬t, then the �rst bran
h 
annot be used, andwe don't need to type-
he
k e1. Similarly for e2, repla
ing t with ¬¬¬t. The abilityto ignore e1 and/or e2 when 
omputing the type for (e ∈ t ? e1 | e2) is impor-tant to type-
he
k overloaded fun
tion. As an example, 
onsider the abstra
tion
µf(b1→→→b1; b2→→→b2).λx.(x ∈ b1 ? c1 | c2) where b1 and b2 are two non-interse
tingbasi
 types and c1 (resp. c2) is a 
onstant of type b1 (resp. b2). The rule (abstr),when it 
onsiders the arrow type b1→→→b1, 
he
ks that the body has type b1 assumingthat x has type b1. Clearly, the typing rule for the dynami
 type dispat
h mustdis
ard in this 
ase the type of the se
ond bran
h.As an aside note that the use of the ex falso quodlibet rule (⊥) yields a simplerformulation of the 
ase rule:
Γ, x : 0 ⊢ e : t

(⊥)
Γ ⊢ e : t0 Γ, (x : t0∧∧∧t) ⊢ e1 : s Γ, (x : t0\\\t) ⊢ e2 : s

Γ ⊢ (x = e ∈ t ? e1|e2) : s
(
ase)The reason why we preferred the previous formulation is that it permits a strongerand simpler substitution lemma. A se
ond reason to prefer the previous formulationis that simpler (
ase) rule above does not easily extend to the full version of CDu
ewith general pattern mat
hing, sin
e it would need spe
ial treatment for patternswithout any 
apture variable (sin
e these would not produ
e any x : 0 hypothesisJournal of the ACM, Vol. V, No. N, Month 20YY.
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 Subtyping · 17in the environment).4. SUBTYPINGAt this point, we have given the 
al
ulus, an operational semanti
s whi
h dependson its type system, whi
h, in turn, depends on a subtyping relation still to bede�ned. The last missing step to 
omplete the de�nition of our system is thesubtyping relation. This will be de�ned by formalizing the ideas we outlined inSe
tions 2.6-2.8.4.1 Set-theoreti
 interpretations of typesDefinition 4.1. A set-theoreti
 interpretation of T is given by a set D and afun
tion J_K : T → P(D) su
h that, for any types t1, t2, t:�Jt1∨∨∨t2K = Jt1K ∪ Jt2K�J¬¬¬tK = D\JtK�J0K = ∅(A 
onsequen
e of the 
onditions is that Jt1∧∧∧t2K = Jt1K∩Jt2K, Jt1\\\t2K = Jt1K\Jt2K,and J1K = D.)This de�nition does not say anything about the interpretation of atoms. A
tually,using an indu
tion on types, we see that set-theoreti
 interpretations with domain
D 
orrespond univo
ally to fun
tions from atoms to P(D).A set-theoreti
 interpretation J_K : T → P(D) indu
es a binary relation ≤JK⊆
T 2 de�ned by:

t ≤JK s ⇐⇒ JtK ⊆ JsKThis relation a
tually only depends on the set of empty types. Indeed, we have:
Jt1K ⊆ Jt2K ⇐⇒ Jt1K ∩ (D\Jt2K) = ∅ ⇐⇒ Jt1∧∧∧¬¬¬t2K = ∅. We also get propertiesof the relation ≤JK � for free �, su
h as its transitivity, or the monotoni
ity of the
∨∨∨ and ∧∧∧ 
onstru
tors, and so on.4.2 Models of typesWe are going to de�ne a notion of model of the type algebra. Intuitively, a modelis a set-theoreti
 interpretation su
h that type 
onstru
tors are interpreted in su
has way that the indu
ed relation ≤JK 
apture their essen
e (in the type system ofthe 
al
ulus), at least as far as subtyping is 
on
erned.As we explained in Se
tion 2.6, the way to formalize it 
onsists in asso
iatingto the interpretation J_K another interpretation E(_), 
alled extensional, and thento require, for J_K to be a model, that J_K and E(_) behave the same as longas subtyping is 
on
erned (that is: JtK ⊆ JsK ⇐⇒ E(t) ⊆ E(s) or, equivalently,
JtK = ∅ ⇐⇒ E(t) = ∅).For ea
h basi
 type b, we assume there is a �xed set of 
onstants BJbK ⊆ C whoseelements are 
alled 
onstants of type b. Note that for two basi
 types b1, b2, thesets BJbiK 
an have a non-empty interse
tion. For any 
onstant c, we assume thatthe type bc is a singleton: BJbcK = {c}.A produ
t type t1×××t2 will of 
ourse be interpreted extensionally as the Cartesianprodu
t Jt1K×××Jt2K. Journal of the ACM, Vol. V, No. N, Month 20YY.



18 · Alain Fris
h et al.Things are more 
ompli
ated for a fun
tion type t1→→→t2. Its extensional inter-pretation should be the set of set-theoreti
 fun
tions (that is, fun
tional graphs)
f su
h that ∀d. d ∈ Jt1K ⇒ f(d) ∈ Jt2K. However, the 
al
ulus we have in mind
an express non-terminating and/or non-deterministi
 fun
tions as well. This sug-gests to 
onsider arbitrary binary relations instead of just fun
tional graphs. Also,the 
al
ulus has a notion of type error: it is not possible to apply an arbitraryfun
tion to an arbitrary value. We are going to take Ω as a spe
ial element todenote this type error. Following this dis
ussion, we interpret the fun
tion type
t1→→→t2 as the set of binary relations f ⊆ D ×DΩ (where DΩ = D + {Ω}) su
h that
∀(d, d′) ∈ f. d ∈ Jt1K ⇒ d′ ∈ Jt2K.Definition 4.2. If D is a set and X, Y are subsets of D, we write DΩ for
D + {Ω} and de�ne X → Y as:

X → Y = {f ⊆ D × DΩ | ∀(d, d′) ∈ f. d ∈ X ⇒ d′ ∈ Y }Note that if we repla
e DΩ with D in this de�nition, then X → Y is always asubset of D → D. As we will see shortly, this would imply that any arrow type isa subtype of 1→→→1. Thanks to the subsumption rule, the appli
ation of any well-typed fun
tion to any well-typed argument would then be itself well-typed. Clearly,this would break type-safety of the 
al
ulus. With De�nition 4.2, instead, we have
X → Y ⊆ D → D if and only if D = X .We 
an now give the formal de�nition of the extensional interpretation asso
iatedto a set-theoreti
 interpretation.Definition 4.3. Let J_K : T → P(D) be a set-theoreti
 interpretation. We de-�ne its asso
iated extensional interpretation as the unique set-theoreti
 interpretationE(_) : T → P(ED) (where ED = C + D2 + P(D × DΩ)) su
h that:E(b) = BJbK ⊆ CE(t1×××t2) = Jt1K × Jt2K ⊆ D2E(t1→→→t2) = Jt1K → Jt2K ⊆ P(D × DΩ)Finally, we 
an formalize the fa
t that a set-theoreti
 interpretation indu
es thesame subtyping relation as if the type 
onstru
tors were interpreted in an exten-sional way.Definition 4.4. A set-theoreti
 interpretation J_K : T → P(D) is a model ifit indu
es the same subtyping relation as its asso
iated extensional interpretation:

∀t1, t2 ∈ T . Jt1K ⊆ Jt2K ⇐⇒ E(t1) ⊆ E(t2)Thanks to a remark in Se
tion 4.1, the 
ondition for a set-theoreti
 interpretationto be a model 
an be redu
ed to:
∀t ∈ T . JtK = ∅ ⇐⇒ E(t) = ∅At this point, we 
an derive many properties about ≤J_K whi
h dire
tly followfrom the fa
t that it is indu
ed by a model. For instan
e, the 
o-/
ontra-varian
e ofthe arrow type 
onstru
tor, and equivalen
es su
h as (t1→→→s)∧∧∧(t2→→→s) ≃ (t1∨∨∨t2)→→→s,
an be immediately derived from the de�nition of the extensional interpretation.The meta-theoreti
 study of the system relies in a 
ru
ial way on many of su
hJournal of the ACM, Vol. V, No. N, Month 20YY.
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 Subtyping · 19properties. With a more axiomati
 approa
h for de�ning the subtyping relation,e.g. by a system of indu
tive or 
oindu
tive rules, we would probably need mu
hmore work to establish these properties, and we would not have the same level oftrust that we did not forget any rule.4.3 Well-foundednessThe notion of model 
aptures the intended lo
al behavior of type 
onstru
tors withrespe
t to subtyping. However, it fails to 
apture a global property of the 
al
ulus,namely that values are �nite binary trees (where leaves are either 
onstants orabstra
tions). For instan
e, let us 
onsider the re
ursive type t = t×××t. Intuitively,a value v has this type if and only if it is a pair (v1, v2) where v1 and v2 also havetype t. To build su
h a value, we would need to 
onsider an in�nite tree, whi
h isruled out. As a 
onsequen
e, the type t 
ontains no value.We will introdu
e a new 
riterion to 
apture this property of �nite de
ompositionof pairs.Definition 4.5. A set-theoreti
 interpretation J_K : T → P(D) is stru
turalif:�D2 ⊆ D;�for any types t1,t2: Jt1×××t2K = Jt1K × Jt2K;�the binary relation on D indu
ed by (d1, d2) ⊲ di is Noetherian.Definition 4.6. A model J_K : T → P(D) is well-founded if it indu
es thesame subtyping relation as a stru
tural set-theoreti
 interpretation.5. MAIN RESULTSLet us �x an arbitrary model J_K : T → P(D), whi
h we 
all the bootstrap model.It indu
es a subtyping relation, whi
h we simply write ≤. In turn, this subtypingrelation de�nes a typing judgment Γ ⊢ e : t for the 
al
ulus and thus also a notion ofvalue and a redu
tion relation e ; e′. We 
an now state four groups of theoreti
alresults about our system. This �rst group (Se
tion 5.1) expresses the fa
t thatour notion of models implies that the type system and the semanti
s are mutually
oherent. The se
ond group (Se
tion 5.2) justi�es our approa
h for de�ning thesubtyping relation with a detour through the notion of models: indeed, we 
an in�ne re-interpret types as sets of values, and this 
reates a new model equivalent tothe bootstrap model (if it is well-founded). The third group of results (Se
tion 5.3)shows that the notion of model is not void, by expressing the existen
e of (severaldi�erent) models satisfying the various 
onditions. Finally, we fo
us (Se
tion 5.4) onthe e�e
tiveness of the subtyping and typing relations and devise simple subtypingalgorithms.5.1 Type soundnessAs announ
ed earlier, we have the two 
lassi
al lemmas whi
h entail type soundness(proofs in Se
tion 6.6).Theorem 5.1 (Subje
t redu
tion). Let e be an expression and t a type. If
(Γ ⊢ e : t) and (e ; e′), then (Γ ⊢ e′ : t). Journal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.Theorem 5.2 (Progress). Let e be a well-typed 
losed expression. If e is nota value, then there exists an expression e′ su
h that e ; e′.It is worth noti
ing that the proof of Theorem 5.2 (given in Se
tion 6.6) does notuse redu
tions under abstra
tions or inside the bran
hes of dynami
 type dispat
h,therefore Progress still holds if we disallow su
h redu
tions. Of 
ourse, subje
tredu
tion also holds in that 
ase. This means that a weak redu
tion strategy (asimplemented typi
ally in programming languages) enjoys type soundness, too. Inthe setting of programming languages, proving the subje
t redu
tion property alsofor a semanti
s that in
ludes strong redu
tion rules is useful be
ause these rules
orrespond to possible 
ompile-time optimizations.Theorem 5.3. For every types t and t1 su
h that t ≤ t1→→→1, there exists a type
t2 su
h that, for every value v:

⊢ v : t2 ⇐⇒ ∃vf , vx. (vfvx
⋆
; v) ∧ (⊢ vf : t) ∧ (⊢ vx : t1)This type is the smallest solution to the equation t ≤ t1→→→s.This result is proved in Se
tion 6.11. The type t2 in the statement of the theoremabove represents exa
tly all the possible results (i.e. is the set of all values that)we may get when applying a 
losed expression e1 of type t to a 
losed expression

e2 of type t1. Sin
e t ≤ t1→→→t2, the type system allows us to derive type t2 forthe appli
ation e1e2. In other words, the typing rule (appl) is lo
ally exa
t: itdoes not introdu
e any new approximation to those already made when typing itsarguments.5.2 Closing the loopThe type system naturally de�nes a new interpretation of types as sets of values:
J_K

V
: T → P(V ), t 7→ {v | ⊢ v : t}It turns out that this interpretation satis�es the 
onditions of De�nitions 4.1and 4.5 (proof in Se
tion 6.4):Theorem 5.4. The fun
tion J_K

V
is a stru
tural set-theoreti
 interpretation.A natural question is whether this set-theoreti
 interpretation is a model. If thisis the 
ase, we would like to 
ompare the subtyping relation it indu
es with the oneused to de�ne the type system (whi
h was indu
ed by the bootstrap model). Thefollowing theorem answers both questions (proof in Se
tion 6.5):Theorem 5.5. The following properties are equivalent:(1 ) The interpretation J_K

V
is a model.(2 ) The interpretations J_K

V
and J_K indu
e the same subtyping relation.(3 ) The bootstrap model J_K is well-founded.When the interpretation J_K
V

is a model, we 
ould use it as a new bootstrapmodel, de�ne a new type system, and so on. The theorem says that this iterationis, be
ause the old and the new bootstrap model already indu
e the same subtypingrelation.Note that the type soundness results do not depend on the fa
t that the interpre-tation J_K
V
is a model. It holds even if the bootstrap model is not well-founded.Journal of the ACM, Vol. V, No. N, Month 20YY.
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 Subtyping · 215.3 Constru
tion of modelsAll the results above would be void if we 
ould not build a model. In this se
tion,we 
laim the existen
e of models with spe
i�
 properties (proofs in Se
tion 6.8 andSe
tion 6.10). Models 
an be 
ompared by the amount of subtyping they allow. If
J_K1 and J_K2 are two models, we write J_K1 � J_K2 if:

∀t, s ∈ T .JtK1 ≤ JsK1 ⇒ JtK2 ≤ JsK2A model J_K2 is universal if J_K1 � J_K2 for any other model J_K1. In other words,a model is universal if the subtyping relation it indu
es is the largest possible one.Clearly, two universal models indu
e the same subtyping relation.Theorem 5.6. There exists a well-founded and universal model.The next theorem shows that the notions of universality and well-foundednessare not automati
.Theorem 5.7. There exists a model whi
h is not well-founded. There exists awell-founded model whi
h is not universal.5.4 De
idability resultsFinally, our system would be of little pra
ti
al use if we were not able to de
idethe subtyping and typing relations. Fortunately, the de
idability of the in
lusionof basi
 types implies the following theorem.Theorem 5.8. The subtyping relation indu
ed by universal models is de
idable.The proof of de
idability (Se
tion 6.9) essentially relies on three 
omponents: (i)the regularity of types, (ii) some algebrai
 properties of universal models, and (iii)the equivalen
e between subtyping and type emptiness problems (remember that
s ≤ t ⇐⇒ s\t ≃ 0.). The algebrai
 properties of the model 
an be used tode
ompose a type t into a set of types ti's su
h that: (i) t ≃ 0 if and only if all
ti ≃ 0 and (ii) the ti's are Boolean 
ombinations of sub-terms of t (Se
tion 6.2). Wealso introdu
e the 
on
ept of simulation (De�nition 6.9) whi
h 
hara
terizes sets oftypes that are 
losed with respe
t to the previous de
omposition. By 
onstru
tiona type is equivalent to 0 if and only if there exists a simulation 
ontaining it (in that
ase, the simulation represents a 
o-indu
tive proof of its emptiness). A regular typehas only a �nite number of unique sub-terms, therefore it su�
es to enumerate allthe possible sets of Boolean 
ombinations of its sub-terms and test whether any ofthem is a simulation (whi
h is de
idable for �nite sets, and more e�
ient algorithmsexist).De
idability of subtyping does not immediately yield de
idability of the typingrelation, the problem being that the use of the negated arrows in the typing rule(abstr) makes the minimum typing property fail. Therefore we need to introdu
e anew synta
ti
 
ategory, type s
hemes: a type-s
heme represents the set of all validtypes for a well typed expression (Se
tion 6.12). This te
hni
al 
onstru
tion allowsus to state the de
idability of the type-
he
king problem.Theorem 5.9. When the subtyping relation is de
idable, the type 
he
king prob-lem (de
iding whether Γ ⊢ e : t for given Γ, e, t) is de
idable.Journal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.6. FORMAL DEVELOPMENTIn this se
tion, we establish the theorems stated in the previous se
tion and otherintermediate lemmas. It 
an be skipped in the �rst reading.6.1 Disjun
tive normal forms for typesWe write A for atoms and we use the meta-variable a to range over atoms. Thereare three kinds of atoms (and values), whi
h we denote by the meta-variable uranging over the set U = {prod, fun,basi
}.We write Afun for atoms of the form t1→→→t2, Aprod for atoms of the form t1×××t2,and Abasi
 for basi
 types. We have A = Afun + Aprod + Abasi
. For what
on
erns values, their kinding too is straightforward: values of the form c, (v1, v2),and µf(. . .).λx.e have respe
tively kind basi
,prod, and fun.Every type 
an be seen as a �nite Boolean 
ombination of atoms. It is 
onvenientto work with disjun
tive normal forms.Definition 6.1. A (disjun
tive) normal form τ is a �nite set of pairs of �nitesets of atoms, that is, an element of Pf (Pf (A ) × Pf (A )) (where Pf denotes the�nite powerset).If J_K : T → P(D) is an arbitrary set-theoreti
 interpretation and τ a normalform, we de�ne JτK as:
JτK =

⋃

(P,N)∈τ

⋂

a∈P

JaK ∩
⋂

a∈N

(D\JaK)(Note that, with the 
onvention that an interse
tion over an empty set is taken tobe D, JτK ⊆ D.)Lemma 6.2. For every type t ∈ T , it is possible to 
ompute a normal form N (t)su
h that for every set-theoreti
 interpretation J_K, JtK = JN (t)K.Proof: We will a
tually de�ne two fun
tions N and N ′, both from types to
Pf (Pf (A ) × Pf (A )), by mutual indu
tion over types.

N (0) = ∅

N (a) = {({a}, ∅)}
N (t1∨∨∨t2) = N (t1) ∪ N (t2)
N (¬¬¬t) = N ′(t)
N ′(0) = {(∅, ∅)}
N ′(a) = {(∅, {a})}
N ′(t1∨∨∨t2) = {(P1 ∪ P2, N1 ∪ N2) | (P1, N1) ∈ N ′(t1), (P2, N2) ∈ N ′(t2)}
N ′(¬¬¬t) = N (t)We 
he
k by indu
tion over the type t the following property:

JtK = JN (t)K = D\JN ′(t)KAs an example, 
onsider the type t = a1∧∧∧(a2∨∨∨¬¬¬a3) where a1, a2, a3 are threeatoms. Then N (t) = {({a1, a2}, ∅), ({a1}, {a3})}. This 
orresponds to the fa
tJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti
 Subtyping · 23that t and (a1∧∧∧a2)∨∨∨(a1∧∧∧¬¬¬a3) have the same interpretation for any set-theoreti
interpretation of the type algebra.Note that the 
onverse result is true as well: for any normal form τ , we 
an �nda type t su
h that JtK = JτK for any set-theoreti
 interpretation. Normal forms arethus simply a di�erent, but handy, syntax for types. In parti
ular, we 
an rephrasein De�nition 4.4 the 
ondition for a set-theoreti
 interpretation to be a model as:for any normal form τ , JτK = ∅ ⇐⇒ E(τ) = ∅.For these reason hen
eforth we will often 
onfound the notions of types andnormal form, and we will often speak of the type τ , taking the latter as a 
anoni
alrepresentative of all the types in N −1(τ).6.2 Study of the subtyping relationDe�nition 4.4 is rather intensional. In this se
tion, we establish a more extensional
riterion for a set-theoreti
 interpretation to be a model.Let J_K be a set-theoreti
 interpretation. We are interested in 
omparing theassertions E(τ) = ∅ and JτK = ∅, for a normal form τ . Clearly, E(τ) = ∅ isequivalent to:
∀(P, N) ∈ τ.

⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a) (3)Let us write Ebasi
D = C , EprodD = D2, EfunD = P(D × DΩ). We have ED =
⋃

u∈U EuD where U = {prod, fun,basi
}. We 
an thus rewrite (3) as:
∀u ∈ U.∀(P, N) ∈ τ.

⋂

a∈P

(E(a) ∩ EuD) ⊆
⋃

a∈N

(E(a) ∩ EuD) (4)Sin
e JaK ∩ EuD = ∅ if a 6∈ Au and JaK ∩ EuD = JaK if a ∈ Au, we 
an rewrite (4)as:
∀u ∈ U.∀(P, N) ∈ τ.(P ⊆ Au) ⇒

(

⋂

a∈P

E(a) ⊆
⋃

a∈N∩Au

E(a)

) (5)(where the interse
tion is taken to be EuD when P = ∅.)To further de
ompose these predi
ates, we will take advantage of the set-theoreti
interpretation of the semanti
 subtyping and rely on two set-theoreti
 fa
ts, one forprodu
t types, one for arrow types. Let us introdu
e some new notation that willmake formulae 
learer, and then start with produ
t types, following an argumentsimilar to the one used by Hosoya, Vouillon and Pier
e [Hosoya et al. 2000℄.Notation 6.3. Let S1, S2 denote two sets su
h that S1 ⊆ S2. We use S1
S2 todenote the 
omplement of S1 with respe
t to S2, that is S2\S1.Lemma 6.4. Let (Xi)i∈P , (Xi)i∈N (resp. (Yi)i∈P , (Yi)i∈N ) be two families ofsubsets of D1 (resp. D2). Then:

(

⋂

i∈P

Xi × Yi

)

\

(

⋃

i∈N

Xi × Yi

)

=
⋃

N ′⊆N

(

⋂

i∈P

Xi\
⋃

i∈N ′

Xi

)

×





⋂

i∈P

Yi\
⋃

i∈N\N ′

Yi



(with the 
onventions: ⋂i∈∅ Xi×Yi = D1×D2; ⋂i∈∅ Xi = D1 and ⋂i∈∅ Yi = D2)Journal of the ACM, Vol. V, No. N, Month 20YY.



24 · Alain Fris
h et al.Note that we use the same notation for elements in the families (Xi)i∈P and
(Xi)i∈N . This is not problemati
 sin
e the sets P and N 
an be di�erent.Proof: First, we noti
e that:

Xi × Yi
D1×D2

=
(

Xi
D1

× D2

)

∪
(

D1 × Yi
D2

)By distributing interse
tions over unions, we get:
⋂

i∈N

Xi × Yi
D1×D2

=

⋃

N ′⊆N





⋂

i∈N ′

(

Xi
D1

× D2

)

∩
⋂

i∈N\N ′

(

D1 × Yi
D2

)



 =

⋃

N ′⊆N





⋂

i∈N ′

Xi
D1

×
⋂

i∈N\N ′

Yi
D2



And �nally:
(

⋂

i∈P

Xi × Yi

)

∩

(

⋂

i∈N

Xi × Yi
D1×D2

)

=

⋃

N ′⊆N





(

⋂

i∈P

Xi ∩
⋂

i∈N ′

Xi
D1

)

×





⋂

i∈P

Yi ∩
⋂

i∈N\N ′

Yi
D2







We get the expe
ted result by applying De Morgan laws.We get an immediate 
orollary.Lemma 6.5. Let P, N be two �nite subsets of Aprod. We have:
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a) ⇐⇒

∀N ′ ⊆ N.

t
∧∧∧

t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

|
= ∅ ∨

u
v ∧∧∧

t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2

}
~ = ∅(with the 
onvention ⋂a∈∅ E(a) = EprodD).We will now establish a similar result for arrow types. We �rst de
ompose theset-theoreti
 → operator (De�nition 4.2) into more primitive operators: powerset,
omplement, Cartesian produ
t.Lemma 6.6. Let X, Y ⊆ D. Then:

X → Y = P

(

X × Y
DΩ

D×DΩ
)Proof: The result 
omes from a simple 
omputation:

X → Y = {f ⊆ D × DΩ | ∀(x, y) ∈ f. ¬(x ∈ X ∧ y 6∈ Y )}

= {f ⊆ D × DΩ | f ∩ X × Y
DΩ

= ∅}

= {f ⊆ D × DΩ | f ⊆ X × Y
DΩ

D×DΩ

}Journal of the ACM, Vol. V, No. N, Month 20YY.
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Lemma 6.7. Let (Xi)i∈P and (Xi)i∈N be two families of subsets of D. Then:

⋂

i∈P

P(Xi) ⊆
⋃

i∈N

P(Xi) ⇐⇒ ∃io ∈ N.
⋂

i∈P

Xi ⊆ Xi0Proof: The ⇐ impli
ation is simple: if ⋂i∈P Xi ⊆ Xi0 with i0 ∈ N , then
⋂

i∈P P(Xi) = P(
⋂

i∈P Xi) ⊆ P(Xi0) ⊆
⋃

i∈N P(Xi). Let us prove the oppo-site dire
tion. We assume that ⋂i∈P P(Xi) ⊆
⋃

i∈N P(Xi). The set ⋂i∈P Xibelongs to all the P(Xi) for i ∈ P . It is thus in the union of all the P(Xi)for i ∈ N . We 
an thus �nd some i0 ∈ N su
h that ⋂i∈P Xi ∈ P(Xi0), whi
h
on
ludes the proof.Lemma 6.8. Let P and N be two �nite subsets of Afun. Then:
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a)

⇐⇒

∃(t0→→→s0)∈N. ∀P ′ ⊆ P.

t
t0\\\

(

∨∨∨

t→→→s∈P ′

t

)|
= ∅ ∨























P 6= P ′

∧u
v




∧∧∧

t→→→s∈P\P ′

s



\\\s0

}
~ = ∅(with the 
onvention ⋂a∈∅ E(a) = EfunD).Proof: The result follows from Lemmas 6.6, 6.7, and 6.4, by noti
ing that inthe 
ondition ⋂t→→→s∈P\P ′ JsK ⊆ Js0K whi
h appears, the 
onvention is to interpretthe interse
tion as being DΩ if P = P ′, whi
h makes the in
lusion impossible.Lemma 6.8 tells us how to de
ompose subtyping between arrow types. For in-stan
e, we 
an dedu
e from the lemma that E((t1→→→s1)∧∧∧(t2→→→s2)) ⊆ E(t→→→s) holdsif and only if the four following properties are satis�ed:�JtK = ∅ or Js1∧∧∧s2K ⊆ JsK�JtK ⊆ Jt1K or Js2K ⊆ JsK�JtK ⊆ Jt2K or Js1K ⊆ JsK�JtK ⊆ Jt1∨∨∨t2KLemmas 6.5 and 6.8, together with the property (5) suggest the following de�ni-tion and give immediately the result of Theorem 6.10 below.Definition 6.9 (Simulation). Let S be an arbitrary set of normal forms. Wede�ne another set of normal forms ES by:ES = {τ | ∀u ∈ U.∀(P, N) ∈ τ. (P ⊆ Au ⇒ CP,N∩Au

u )}Journal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.where:
CP,Nbasi
 ::= C ∩

⋂

b∈P

BJbK ⊆
⋃

b∈N

BJbK

CP,Nprod ::= ∀N ′ ⊆ N.











































N

(

∧∧∧

t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

)

∈ S

∨

N





∧∧∧

t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2



 ∈ S

CP,Nfun ::= ∃t0→→→s0 ∈ N. ∀P ′ ⊆ P.







































































N

(

t0∧∧∧
∧∧∧

t→→→s∈P ′

¬¬¬t

)

∈ S

∨



























P 6= P ′

∧

N



(¬¬¬s0)∧∧∧
∧∧∧

t→→→s∈P\P ′

s



 ∈ SWe say that S is a simulation if:
S ⊆ ESThe intuition is that if we 
onsider the statements of Lemmas 6.5 and 6.8 as if theywere rewriting rules (from right to left), then ES 
ontains all the types that we 
andedu
e in one step redu
tion to be empty when we suppose that the types in S areempty. A simulation is thus a set that is already saturated w.r.t. su
h a rewriting.In parti
ular, if we 
onsider the statements of Lemmas 6.5 and 6.8 as inferen
erules for determining when a type is equal to 0, then ES is the set of immediate
onsequen
es of S , and a simulation is a self-justifying set, that is a 
o-indu
tiveproof of the fa
t that all its elements are equal to 0. Of 
ourse this latter propertywill play a 
ru
ial role to de
ide the subtyping relation (see Se
tion 6.9).Theorem 6.10. Let J_K : T → P(D) be a set-theoreti
 interpretation. Wede�ne a set of normal forms S by:

S = {τ | JτK = ∅}Then: ES = {τ | E(τ) = ∅}Proof: Immediate 
onsequen
e of Lemmas 6.5 and 6.8.Corollary 6.11. Let J_K be a set-theoreti
 interpretation of types. We de�neas above S = {τ | JτK = ∅}. Then J_K is a model if and only if S = ES .Journal of the ACM, Vol. V, No. N, Month 20YY.
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ondition for a set-theoreti
 interpretation to be amodel depends only on the subtyping relation it indu
es.Corollary 6.12. Let J_K1 : T → P(D1) be a model and J_K2 : T → P(D2)be a set-theoreti
 interpretation. Then the following assertions are equivalent:�J_K2 is a model and it indu
es the same subtyping relation as J_K1.�for any type t, JtK1 = ∅ ⇐⇒ JtK2 = ∅.The following lemma, whi
h is an immediate 
orollary of Lemma 6.8 gives sev-eral properties about subtyping between arrow types in a model, whi
h will beneeded to study the meta-theory of the type system (see the proofs of Lemma 6.15,Lemma 6.21, Lemma 6.37).Lemma 6.13 (Strong disjun
tion for arrows). Let ≤ be the subtyping re-lation indu
ed by a model, and P ,N two �nite sets of arrow types. Then:
∧∧∧

a∈P

a ≤
∨∨∨

a∈N

a ⇐⇒ ∃a0 ∈ N.
∧∧∧

a∈P

a ≤ a0From this we immediately dedu
e that:If P ,N are �nite sets of arrow types and if a0 is an arrow type, if we de�ne t as
∧∧∧

a∈P a\\\
∨∨∨

a∈N a and if we assume that t 6≃ 0, then:
t ≤ a0 ⇐⇒

∧∧∧

a∈P

a ≤ a0If P ,N1,N2 are �nite sets of arrow types, then:
∧∧∧

a∈P

a 6≤
∨∨∨

a∈N1

a

∧
∧∧∧

a∈P

a 6≤
∨∨∨

a∈N2

a























⇐⇒
∧∧∧

a∈P

a 6≤
∨∨∨

a∈N1∪N2

a6.3 Synta
ti
al meta-theory of the type systemIn this se
tion and in the following one, we �x a bootstrap model J_K : T → P(D),we write ≤ for the indu
ed subtyping relation and ≃ for the asso
iated equivalen
erelation, and we study the resulting typing judgment Γ ⊢ e : t.Lemma 6.14 (Strengthening). Let Γ1 and Γ2 be two typing environmentssu
h that for any x in the domain of Γ1, we have Γ2(x) ≤ Γ1(x). If Γ1 ⊢ e : t, then
Γ2 ⊢ e : t.Proof: Indu
tion on the derivation of Γ1 ⊢ e : t. We simply introdu
e aninstan
e of the subsumption rule below ea
h instan
e of the (var) rule.Lemma 6.15 (Admissibility of the interse
tion rule). If Γ ⊢ e : t1 and
Γ ⊢ e : t2, then Γ ⊢ e : t1∧∧∧t2. Journal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.Proof: By indu
tion on the stru
ture of the two typing derivations.Let us �rst 
onsider the 
ase when the last rule applied to one of the two deriva-tions is (subsum), say:
. . .

Γ ⊢ e : s1 s1 ≤ t1
Γ ⊢ e : t1

. . .
Γ ⊢ e : t2The indu
tion hypothesis gives Γ ⊢ e : s1∧∧∧t2. But s1∧∧∧t2 ≤ t1∧∧∧t2 be
ause s1 ≤ t1,and a new appli
ation of (subsum) gives Γ ⊢ e : t1∧∧∧t2 as expe
ted.In all the remaining 
ases, the two derivations end with an instan
e of the samerule (whi
h depends on the toplevel 
onstru
tor of e).Rules (const), (var), (rnd): Those rules give only one possible type t for e, and

t∧∧∧t ≃ t.Rule (appl): The situation is as follows:
. . .

Γ ⊢ e1 : t1→→→t2

. . .
Γ ⊢ e2 : t1

Γ ⊢ e1e2 : t2

. . .
Γ ⊢ e1 : t′1→→→t′2

. . .
Γ ⊢ e2 : t′1

Γ ⊢ e1e2 : t′2The indu
tion hypothesis gives Γ ⊢ e1 : (t1→→→t2)∧∧∧(t′1→→→t′2) and Γ ⊢ e2 : t1∧∧∧t′1. To
on
lude, it is enough to 
he
k that (t1→→→t2)∧∧∧(t′1→→→t′2) ≤ (t1∧∧∧t′1)→→→(t2∧∧∧t′2), whi
h
an be proved as follows:E((t1→→→t2)∧∧∧(t′1→→→t′2))
= (Jt1K → Jt2K) ∩ (Jt′1K → Jt′2K)
= {f ∈ EfunD | ∀(x, y) ∈ f.(x ∈ Jt1K ⇒ y ∈ Jt2K) ∧ (x ∈ Jt′1K ⇒ y ∈ Jt′2K)}
⊆ {f ∈ EfunD | ∀(x, y) ∈ f.(x ∈ Jt1K ∩ Jt′1K ⇒ y ∈ (Jt2K ∩ Jt′2K)}
= E((t1∧∧∧t′1)→→→(t2∧∧∧t′2))Rule (pair): The situation is as follows:

. . .
Γ ⊢ e1 : t1

. . .
Γ ⊢ e2 : t2

Γ ⊢ (e1, e2) : t1×××t2

. . .
Γ ⊢ e1 : t′1

. . .
Γ ⊢ e2 : t′2

Γ ⊢ (e1, e2) : t′1×××t′2Let t′′1 = t1∧∧∧t′1 and t′′2 = t2∧∧∧t′2. By applying the indu
tion hypothesis twi
e, weget Γ ⊢ e1 : t′′1 and Γ ⊢ e2 : t′′2 . The rule (pair) gives Γ ⊢ (e1, e2) : t′′1×××t′′2 . To
on
lude, it is enough to see that t′′1×××t′′2 ≃ (t1×××t2)∧∧∧(t′1×××t′2). Indeed:E(t′′1×××t′′2 ) = (Jt1K ∩ Jt′1K) × (Jt2K ∩ Jt′2K) = Jt1∧∧∧t2K ∩ Jt′1∧∧∧t′2K = E((t1×××t2)∧∧∧(t′1×××t′2))Rule (case): Let us 
onsider this situation:
. . .

Γ ⊢ e : t0

. . .
(x : ti), Γ ⊢ ei : s

Γ ⊢ (x = e ∈ t ? e1|e2) : s

. . .
Γ ⊢ e : t′0

. . .
(x : t′i), Γ ⊢ ei : s′

Γ ⊢ (x = e ∈ t ? e1|e2) : s′with t1 = t0∧∧∧t, t2 = t0\\\t, t′1 = t′0∧∧∧t, t′2 = t′0\\\t. The indu
tion hypothesis gives:
Γ ⊢ e : t′′0 with t′′0 = t0∧∧∧t′0. Let us de�ne t′′1 = t′′0∧∧∧t and t′′2 = t′′0\\\t. Let i ∈ {1, 2}.We have t′′i ≤ ti and thus, a

ording to Lemma 6.14, (x : t′′i ), Γ ⊢ ei : s. Similarly,we get (x : t′′i ), Γ ⊢ ei : s′, and thus, applying again the indu
tion hypothesis
(x : t′′i ), Γ ⊢ ei : s′′ where s′′ = s∧∧∧s′. Then, with the (case) rule, we establish
Γ ⊢ (x = e ∈ t ? e1|e2) : s′′ as expe
ted.Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti
 Subtyping · 29The spe
ial 
ases (where ti ≃ 0 or t′i ≃ 0) are similar.Rule (abstr): Let us 
onsider two appli
ations of the rule (abstr) to the sameabstra
tion µf(t1→→→s1; . . . ; tn→→→sn).λx.e with the following types:
t =

∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j)

t′ =
∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=m+1..m′

¬¬¬(t′j→→→s′j)where t 6≃ 0 and t′ 6≃ 0. We de�ne:
t′′ =

∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m′

¬¬¬(t′j→→→s′j)We have t′′ ≃ t∧∧∧t′. We only need to verify that some instan
e of the rule (abstr)allows us to dedu
e the type t′′ for the abstra
tion. For i = 1..n, we have,by hypothesis (f : t), (x : ti), Γ ⊢ e : si, and thus, a

ording to Lemma 6.14,
(f : t′′), (x : ti), Γ ⊢ e : si. Then, we 
he
k that t′′ 6≃ 0, whi
h results immediatelyfrom Lemma 6.13. In this 
ase, we have not used the indu
tion hypothesis.Corollary 6.16. Let Γ be a typing environment and e an expression whi
h iswell-typed under Γ. Then the set {t ∈ T | (Γ ⊢ e : t)∨ (Γ ⊢ e : ¬¬¬t)} 
ontains 0 andis 
losed under ∨∨∨ and ¬¬¬ (and thus ∧∧∧).Proof: Let E be the set introdu
ed in the statement. It is 
learly 
losed under
¬¬¬ and invariant under the equivalen
e ≃. We have Γ ⊢ e : 1 = ¬¬¬0 be
auseof the subsumption rule, and thus 0 ∈ E. What remains is to prove that E is
losed under ∨∨∨. So let us take two elements t1 and t2 in E. If Γ 6⊢ e : t1∨∨∨t2,then be
ause of (subsum), we get Γ 6⊢ e : t1 and Γ 6⊢ e : t2. Be
ause t1 and
t2 are in E, we thus have Γ ⊢ e : ¬¬¬t1 and Γ ⊢ e : ¬¬¬t2. Lemma 6.15 thengives Γ ⊢ e : ¬¬¬t1∧∧∧¬¬¬t2. And ¬¬¬t1∧∧∧¬¬¬t2 ≃ ¬¬¬(t1∨∨∨t2). We have thus proved that
Γ ⊢ e : t1∨∨∨t2 or Γ ⊢ e : ¬¬¬(t1∨∨∨t2).Lemma 6.17 (Substitution). Let e, e1, . . . , en be expressions, x1, . . . , xn dis-tin
t variables, t, t1, . . . , tn types, and Γ a typing environment. Then:

{

(x1 : t1), . . . , (xn : tn), Γ ⊢ e : t
∀i = 1..n. Γ ⊢ ei : ti

⇒ Γ ⊢ e[x1 := e1; . . . ; xn := en] : tProof: By indu
tion on the typing derivation for (x1 : t1), . . . , (xn : tn), Γ ⊢ e : t.We simply �plug� a 
opy of the derivation for Γ ⊢ ei : ti wherever the rule (var)is used for variable xi.6.4 Interpreting types as sets of valuesThe synta
ti
al properties obtained in the previous se
tion are used here to provesome properties about the interpretation of types as sets of values, as de�ned inSe
tion 5.2: JtK
V

= {v | ⊢ v : t} Journal of the ACM, Vol. V, No. N, Month 20YY.



30 · Alain Fris
h et al.Lemma 6.18. If t ≤ s, then JtK
V

⊆ JsK
V
. In parti
ular, if t ≃ s, then JtK

V
=

JsK
V
.Proof: Consequen
e of the subsumption rule.Lemma 6.19. J0K

V
= ∅.Proof: We prove that (⊢ v : t) ⇒ t 6≃ 0 by indu
tion on the typing deriva-tion. There are four 
ases to 
onsider (one per value 
onstru
tor, one for thesubsumption rule). All of them are trivial.Lemma 6.20. Jt1∧∧∧t2KV

= Jt1KV
∩ Jt2KV

.Proof: Lemma 6.18 gives Jt1∧∧∧t2KV
⊆ JtiKV

for i ∈ {1, 2}, and thus Jt1∧∧∧t2KV
⊆

Jt1KV
∩ Jt2KV

. Lemma 6.15 gives the opposite in
lusion.Lemma 6.21 (Inversion).
Jt1×××t2KV

= {(v1, v2) | ⊢ v1 : t1,⊢ v2 : t2}
JbK

V
= {c | bc ≤ b}

Jt→→→sK
V

= {(µf(t1→→→s1; . . . ; tn→→→sn).λx.e) ∈ V . |
∧∧∧

i=1..n

ti→→→si ≤ t→→→s}Moreover, if v is a value and a is an atom of a di�erent kind, then ⊢ v : ¬¬¬a.Proof: For the three equalities, the ⊇ in
lusion is straightforward.To prove the three opposite in
lusions, let us start with a general remark. Aderivation for ⊢ v : t 
an always be des
ribed as an instan
e of the rule 
orre-sponding to the kind of v (rule (const) for 
onstants, (pair) for pairs, and (abstr)for abstra
tions), followed by zero or more instan
e of (subsum). That is, we
an always �nd another type t′ ≤ t su
h that ⊢ v : t′ is obtained by a dire
tappli
ation of the typing rule 
orresponding to v. If t is an atom a, then v isne
essarily of the same kind as a. Indeed, if v is a pair, then t′ is a produ
t type;if v is a 
onstant, t′ is a basi
 type; if v is an abstra
tion, t′ is an interse
tion ofone or more arrow types (and maybe of zero or more negation of arrow types).In all 
ases, t′ ∩a ≃ 0 if a and v do not have the same kind, but sin
e t′ ≤ a, thismeans that t′ ≃ 0, whi
h is impossible by Lemma 6.19. We also have proved the�nal remark in the statement of the Lemma (be
ause if a and v does not havethe same kind, then t′ ≤ ¬¬¬a, and thus ⊢ v : ¬¬¬a).Case ⊢ v : t1×××t2:. The value is ne
essarily a pair (v1, v2) su
h that ⊢ v1 : t′1,
⊢ v2 : t′2, and t′1×××t′2 ≤ t1×××t2. But t′1 6≃ 0 and t′2 6≃ 0 be
ause of Lemma 6.19, andthus t′1 ≤ t1 and t′2 ≤ t2. By subsumption, we get ⊢ v1 : t1 and ⊢ v2 : t2.Case ⊢ v : b: The value is ne
essarily a 
onstant c su
h that bc ≤ b.Case ⊢ v : t→→→s: The value is ne
essarily an abstra
tion
µf(t1→→→s1; . . . ; tn→→→sn).λx.e. Here, the type t′ has the form:

∧∧∧

i=1..n

(ti→→→si)∧∧∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j)Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti
 Subtyping · 31with t′ 6≃ 0 and t′ ≤ t→→→s. We 
an therefore apply the se
ond point of Lemma 6.13and dedu
e:
∧∧∧

i=1..n

(ti→→→si) ≤ t→→→s

Lemma 6.22. J¬¬¬tK
V

= V \JtK
V
.Proof:We have (t∧∧∧¬¬¬t) ≃ 0 and, thus, JtK

V
∩ J¬¬¬tK

V
= Jt∧∧∧¬¬¬tK

V
= J0K

V
= ∅. So itremains to prove that JtK

V
∪ J¬¬¬tK

V
= V , that is:

∀v.∀t. (⊢ v : t) ∨ (⊢ v : ¬¬¬t)We pro
eed by indu
tion over the pair (v, t). Thanks to Corollary 6.16, we 
anassume that t is an atom a. Lemma 6.21 gives ⊢ v : ¬¬¬a if a and v do not havethe same kind. Now, we assume they have the same kind.Case v = c: We have ⊢ c : bc. The set E(bc) is a singleton (namely {c}), and thusE(bc) ⊆ E(a) or E(bc) ⊆ E(¬¬¬a), that is: bc ≤ a or bc ≤ ¬¬¬a. By subsumption, weget ⊢ bc : a or ⊢ bc : ¬¬¬a.Case v = (v1, v2), a = t1×××t2: If ⊢ v1 : t1 and ⊢ v2 : t2, we get ⊢ v : a. Otherwise,say 6⊢ v1 : t1, we get ⊢ v1 : ¬¬¬t1 by the indu
tion hypothesis, and ⊢ v2 : 1 alwaysholds, and thus we get ⊢ v : (¬¬¬t1)×××1. We 
on
lude this 
ase by the observationthat (¬¬¬t1)×××1 ≤ ¬¬¬(t1×××t2).Case v = µf(t1→→→s1; . . . ; tn→→→sn).λx.e, a = t→→→s: It is easy to see that ⊢ v : a if
∧∧∧

i=1..n ti→→→si ≤ a and ⊢ v : ¬¬¬a otherwise.Lemma 6.23. Jt1∨∨∨t2KV
= Jt1KV

∪ Jt2KV
.Proof: Using Lemmas 6.22, 6.20 and 6.18, we get: Jt1∨∨∨t2KV

=
J¬¬¬((¬¬¬t1)∧∧∧(¬¬¬t2))KV

= V \(J¬¬¬t1KV
∩ J¬¬¬t2KV

) = V \(V \Jt1KV
\Jt2KV

) = Jt1KV
∪

Jt2KV
.From Lemmas 6.22, 6.23 and 6.19, we get that J_K

V
is a set-theoreti
 interpre-tation.To 
on
lude the proof of Theorem 5.4, we need to 
he
k that it is stru
tural.Clearly V 2 ⊆ V and Lemma 6.21 gives Jt1×××t2KV

= Jt1KV
× Jt2KV

. Also, therelation indu
ed by (v1, v2) ⊲ vi is 
learly Noetherian.6.5 Closing the loopIn this se
tion, we detail the proof of Theorem 5.5. We start with a lemma thatshows that for an arbitrary �nite set of arrow types, we 
an always �nd a well-typed and 
losed abstra
tion (hen
e a value) having exa
tly this set of types in itsinterfa
e. This fa
t will be used in the proof of Lemma 6.26.Journal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.Lemma 6.24. For every non-empty and �nite family of arrow types t1→→→s1, . . . , tn→→→sn,the expression µf(t1→→→s1; . . . ; tn→→→sn).λx.fx is a value.Proof: Dire
t appli
ation of the typing rules and from the de�nition of val-ues.Lemma 6.25. In every model, JtK = ∅ ⇐⇒ J1 → tK ⊆ J1 → 0K holds true.Proof: Lemma 6.8 tells us that, in a model, J1 → tK ⊆ J1 → 0K is equivalent to
(J1K ⊆ J0K ∨ JtK ⊆ J0K) ∧ (J1K ⊆ J1K), whi
h is itself equivalent to JtK = ∅.Lemma 6.26. The set-theoreti
 interpretation J_K

V
is a model if and only if itindu
es the same subtyping relation as J_K.Proof: The ⇐ impli
ation is given by Corollary 6.12. Let us assume that

J_K
V

is a model and prove that JtK
V

= ∅ ⇐⇒ t ≃ 0 for any type t. The
⇐ impli
ation is given by Lemma 6.19. Let t be a type su
h that JtK

V
= ∅.Be
ause J_K

V
is a model, Lemma 6.25 gives: J1 → tK

V
⊆ J1 → 0K

V
. Now we
onsider the expression v = µf(1 → t).λx.fx. A

ording to Lemma 6.24, it is avalue. A

ording to Lemma 6.21, it is an element of J1 → tK

V
, and thus also of

J1 → 0K
V
, whi
h means that 1 → t ≤ 1 → 0 (again Lemma 6.21), and �nallythat t ≃ 0 (Lemma 6.25 for the model J_K).Lemma 6.27. If the bootstrap model is well-founded, then J_K

V
is a model.Proof: By de�nition of a well-founded model, there is a stru
tural set-theoreti
interpretation whi
h indu
es the same subtyping relation as the bootstrap model.It is thus also a model. Sin
e the type system and J_K

V
only depend on this sub-typing relation, we 
an assume that the bootstrap model is not only well-foundedbut also stru
tural. We will use the Noetherian relation ⊲ from De�nition 4.5.We need to prove that, for every type t, JtK

V
= ∅ ⇐⇒ t ≃ 0. The ⇐impli
ation is given by Lemma 6.19 and Lemma 6.18. We a
tually prove byindu
tion (using the ⊲ relation) that for all d ∈ D, the following property holds:

(∀t ∈ T . d ∈ JtK ⇒ JtK
V

6= ∅).Consider a type t su
h that d ∈ JtK. If d = (d1, d2) ∈ D2, then it is in the set
JtK ∩ D2 =

⋃

(P,N)∈N (t)

(

D2 ∩
⋂

a∈P

JaK\
⋃

a∈N

JaK
)We 
an thus �nd (P, N) ∈ N (t) su
h that d ∈ D2 ∩

⋂

a∈P JaK\⋃a∈N JaK. Notethat if a is an atom whi
h is not a produ
t type, then D2∩JaK = J1×××1K∩JaK = ∅,be
ause E(1×××1) ∩ E(a) = ∅. We 
an thus assume that P ⊆ Aprod, and we have
d ∈

⋂

t1×××t2∈P (Jt1K × Jt2K)\
⋃

t1×××t2∈N (Jt1K × Jt2K). If we write d = (d1, d2), thenJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti
 Subtyping · 33Lemma 6.4 gives some N ′ ⊆ N su
h that d1 ∈ Js1K and d2 ∈ Js2K for:














s1 =
∧∧∧

t1×××t2∈P

t1\\\
∨∨∨

t1×××t2∈N ′

t1

s2 =
∧∧∧

t1×××t2∈P

t2\\\
∨∨∨

t1×××t2∈N\N ′

t2The indu
tion hypothesis applied to d1 and d2 gives Js1KV
6= ∅ and Js2KV

6= ∅,and thus Js1×××s2KV
6= ∅. To 
on
lude this 
ase, we observe that s1×××s2 ≤ t, usingagain Lemma 6.4.Now, we assume that d 6∈ D2 = J1×××1K. We thus have d ∈ Jt\\\1×××1K, whi
himplies that t\\\1×××1 6≃ 0. As a 
onsequen
e E(t\\\1×××1) 6= ∅, and thus E(t) ∩

(ED\EprodD) 6= ∅. We are in at least one of the two 
ases:E(t) ∩ C 6= ∅: let c ∈ E(t) ∩ C . We have E(bc) = {c} ⊆ E(t), and thus bc ≤ t.We 
on
lude that ⊢ c : t.E(t) ∩ EfunD 6= ∅: we have:E(t) ∩ EfunD =
⋃

(P,N)∈N (t) s.t. P⊆Afun(EfunD ∩
⋂

a∈P

E(a)\
⋃

a∈N

E(a)

)This set is not empty. We 
an thus �nd an element (P, N) in N (t) su
hthat P = {t1→→→s1, . . . , tn→→→sn}, N ∩ Afun = {t′1→→→s′1, . . . , t
′
m→→→s′m}, and t′ =

∧∧∧

i=1..n ti→→→si\\\
∨∨∨

j=1..m t′j→→→s′j 6≃ 0. We have t′ ≤ t and the value v =
µf(t1→→→s1; . . . ; tn→→→sn).λx.fx has type t′ (dire
t appli
ation the typing rule forabstra
tions). By subsumption, we get ⊢ v : t.Lemmas 6.27 and 6.26 entail Theorem 5.5.6.6 Type soundnessHere is the proof of the subje
t redu
tion property, Theorem 5.1 in Se
tion 5.Proof: If (Γ ⊢ e : t), then we prove by indu
tion on the derivation for Γ ⊢ e : tthat ∀e′.(e ; e′) ⇒ (Γ ⊢ e′ : t). We 
onsider the last rule used in the derivationof Γ ⊢ e : t.Rule (subsum): we have Γ ⊢ e : s ≤ t and e ; e′. The indu
tion hypothesisgives Γ ⊢ e′ : s, and by subsumption we get Γ ⊢ e′ : t.Rules (const),(var): the expression e is a 
onstant or a variable. It 
annot beredu
ed.Rule (proj): we have e = πi(e0), t = ti, Γ ⊢ e0 : t1×××t2. If e′ is obtained byredu
ing e0, that is, e0 ; e′0 and e′ = πi(e

′
0), we get, by the indu
tion hypothesis:

Γ ⊢ e′0 : t1×××t2 and thus Γ ⊢ e′ : ti. If e′ is obtained by redu
ing the toplevel πi in
e, then ne
essarily e0 is a value (v1, v2) (and thus, by Lemma 6.21: Γ ⊢ vi : ti),and e′ = vi. We get Γ ⊢ e′ : ti.Rule (rnd): we have e = rnd(t). The redu
tion rule for this expression gives
⊢ e′ : t, whi
h implies Γ ⊢ e′ : t by Lemma 6.14.Journal of the ACM, Vol. V, No. N, Month 20YY.



34 · Alain Fris
h et al.Rule (pair): we have e = (e1, e2), t = t1×××t2, and Γ ⊢ ei : ti for i = 1..2. Theonly possible way to redu
e e is to redu
e one of the ei, say e′ = (e′1, e2) where
e1 ; e′1. The indu
tion hypothesis gives Γ ⊢ e′1 : t1, and we get Γ ⊢ e′ : t1×××t2.Rule (appl): we have e = e1e2, Γ ⊢ e1 : s → t and Γ ⊢ e2 : s. If e′ is obtainedby redu
ing e1 or e2, we pro
eed as in the 
ase for the (pair) rule. Otherwise,we have ne
essarily e1 = µf(s1→→→t1; . . . ; sn→→→tn).λx.e0, e′ = e0[f := e1; x := e2]and e2 is a value v2. We have ∧∧∧i∈I si→→→ti ≤ s → t, where I = {1, . . . , n}(Lemma 6.21). A

ording to Lemma 6.8, this means that s ≤

∨∨∨

i∈I si and thatfor any non-empty I ′ ⊆ I su
h that s 6≤
∨∨∨

i∈I\I′ si, we have ∧∧∧i∈I′ ti ≤ t. Wetake I ′ = {i ∈ I | ⊢ v2 : si}. This set is not empty. Indeed, sin
e ⊢ v2 : sand s ≤
∨∨∨

i∈I si, we have at least one i su
h that ⊢ v2 : si (Lemma 6.23).Now, we 
laim that s 6≤
∨∨∨

i∈I\I′ si. Otherwise, we would �nd some i 6∈ I ′ su
hthat ⊢ v2 : si, whi
h 
ontradi
ts the de�nition for I ′. As a 
onsequen
e, weget ∧∧∧i∈I′ ti ≤ t. We 
laim that Γ ⊢ e′ :
∧∧∧

i∈I′ ti (whi
h by subsumption yields
Γ ⊢ e′ : t i.e. the result). To prove our 
laim we show that for every i ∈ I ′ we have
Γ ⊢ e′ : ti, whi
h thanks to Lemma 6.15 yields our 
laim. So, let us 
onsider any
i ∈ I ′, that is, any i su
h that ⊢ v2 : si. The abstra
tion e1 is well-typed under
Γ therefore in its derivation there is an instan
e of the (abstr) rule (possiblyfollowed by several appli
ations of the subsumption rule) whi
h infers for e1 atype t′ under Γ. One of the premises of this rule is (f : t′), (x : ti), Γ ⊢ e0 : ti.We also have Γ ⊢ e1 : t′ and Γ ⊢ v2 : si (Lemma 6.14), and thus Γ ⊢ e′ : ti(Lemma 6.17) as expe
ted.Rule (abstr): the expression e is an abstra
tion, and the redu
tion 
an only o

urwithin its body. We pro
eed as in the 
ase for the (pair) rule.Rule (case): we have e = (x = e0 ∈ s ? e1 | e2). If the redu
tion o

urs withinone of the sub-expressions e0,e1,e2, we pro
eed as in the 
ase for the (pair)rule. Otherwise, the expression e0 is ne
essarily a value v, and we have either
(⊢ v : s) ∧ (e′ = e1[x := v]) or (⊢ v : ¬¬¬s) ∧ (e′ = e2[x := v]). Let us 
onsider forinstan
e the �rst 
ase. The typing rule gives: Γ ⊢ v : s0. Thanks to Lemma 6.15,we get Γ ⊢ v : s0∧∧∧s. Be
ause of Lemma 6.19, we know that s0∧∧∧s 6≃ 0, that is
s0 6≤ ¬¬¬s. So the typing rule (case) under 
onsideration has a premise for e1,namely (x : s0∧∧∧s), Γ ⊢ e1 : t. Lemma 6.17 gives Γ ⊢ e′ : t as expe
ted.And here is the proof of the progress property, Theorem 5.2 in Se
tion 5. Notethat this proof is relatively standard.Proof: We write e 6; if e 
annot be redu
ed (6 ∃e′.e ; e′). Suppose that ⊢ e : t;we prove on indu
tion on the derivation of ⊢ e : t that either e is a value or it
an be redu
ed. We 
onsider the last rule used in this derivation.Rule (subsum): straightforward appli
ation of the indu
tion hypothesis.Rule (var): a variable 
annot be well-typed in an empty environment. This 
aseis thus impossible.Rule (const): the expression e is a 
onstant. It is thus a value.Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti
 Subtyping · 35Rule (abstr): the expression e is an abstra
tion whi
h is well-typed under theempty environment. It is thus a value.Rule (proj): we have e = πi(e0), t = ti, ⊢ e0 : t1×××t2. If e0 
an be redu
ed to,say, e′0, then e ; πi(e
′
0). Otherwise, if e0 6;, then by the indu
tion hypothesis

e0 is a value. By Lemma 6.21, we get e0 = (v1, v2), and thus e ; vi.Rule (rnd): we have e = rnd(t) and thus e ; e′ for any e′ of type t (for instan
e,we 
an take for e′ an expression of type 0, whi
h exists).Rule (pair): we have e = (e1, e2), t = t1×××t2, and ⊢ ei : ti for i = 1..2. If one ofthe ei 
an be redu
ed, then e 
an also be redu
ed. Otherwise, by the indu
tionhypothesis, we obtain that both e1 and e2 are values, and so is e.Rule (appl): we have e = e1e2, ⊢ e1 : s → t and ⊢ e2 : s. If one of the
ei 
an be redu
ed, then e 
an also be redu
ed. Otherwise, by the indu
tionhypothesis, we obtain that both e1 and e2 are values. By Lemma 6.21, we get
e1 = µf(s1→→→t1; . . . ; sn→→→tn).λx.e0. Then e ; e0[f := e1; x := e2].Rule (case): we have e = (x = e0 ∈ s ? e1 | e2). If e0 
an be redu
ed, then
e 
an also be redu
ed. Otherwise, by the indu
tion hypothesis, we obtain that
e0 is a value v. Be
ause of Lemma 6.23, we have ⊢ v : s or ⊢ v : ¬¬¬s, and thus
e ; e1[x := v] or e ; e2[x := v].6.7 Constru
tion of modelsA naive idea to build a model would be to look for an interpretation domain D su
hthat D = ED. Of 
ourse su
h a set 
annot exist, sin
e the 
ardinality of EfunD, andthus of ED, is stri
tly larger than the 
ardinality of D. This 
ardinality problem
an be avoided by 
onsidering only �nite graphs to interpret fun
tions. As we willshow below, this does not a�e
t the subtyping relation.For any set D, we write EfD = C + D2 + Pf (D × DΩ) where Pf denotes therestri
tion of the powerset to �nite subsets.Definition 6.28. A set-theoreti
 interpretation J_K : T → P(D) is �nitely extensionalif:(1 ) D = EfD(2 ) JaK = E(a) ∩ D for any atom a.Lemma 6.29. If J_K is a �nitely extensional set-theoreti
 interpretation, then

JtK = E(t) ∩ D for any type t, and JτK = E(τ) ∩ D for any normal formal τ .Proof: Indu
tion on t.The next lemma shows that taking �nite sets as extensional models for fun
-tions does not 
hange the subtyping relation between arrow types (
ompare it withLemma 6.7). Journal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.Lemma 6.30. Let (Xi)i∈P and (Xi)i∈N be two �nite families of subsets of D.Then:
⋂

i∈P

Pf (Xi) ⊆
⋃

i∈N

Pf (Xi) ⇐⇒ ∃io ∈ N.
⋂

i∈P

Xi ⊆ Xi0Proof: The ⇐ impli
ation is straightforward. Let us prove ⇒. We assume thatany �nite subset of X =
⋂

i∈P Xi is a subset of one of the Xi0 with i0 ∈ N .We need to prove that the same holds for X itself. Otherwise, we 
ould �nd forea
h i0 ∈ N an element xi0 ∈ X\Xi0 and we would obtain a 
ontradi
tion by
onsidering the �nite set {xi0 | i0 ∈ N}.Lemma 6.31. Let P, N be two �nite sets of arrow types and J_K an arbitraryset-theoreti
 interpretation. Then:
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a) ⇐⇒ Pf (D × DΩ) ∩
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a)(By 
onvention ⋂a∈∅ E(a) = P(D × DΩ).)Proof: Consequen
e of Lemmas 6.7, 6.30, and 6.6.It is, then, not surprising that �nitely extensional interpretations are models.Lemma 6.32. Every �nitely extensional interpretation is a model.Proof: Sin
e JτK = E(τ) ∩ D, we need to prove thatE(τ) = ∅ ⇐⇒ E(τ) ∩ D = ∅for any normal form τ . We write:E(τ) =
⋃

u∈U

⋃

(P,N)∈τ

(EuD ∩
⋂

a∈P

E(a)\
⋃

a∈N

E(a)

)So we need to prove that for any u ∈ U and (P, N) two �nite sets of atoms, wehave: EuD ∩
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a) ⇐⇒ D ∩ EuD ∩
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a)If u 6= fun, then EuD ⊆ D, and the equivalen
e is thus trivial. The 
ase u = fun
omes from Lemma 6.31.6.8 A universal modelIn this se
tion, we de�ne a stru
tural and �nitely extensional model and then showthat it is universal and, in the next se
tion, that the subtyping relation indu
ed bythis model is de
idable.We need to build a set D0 su
h that D0 = EfD0, that is, a solution to theequation D0 = C + D0 × D0 + Pf (D0 ×D0
Ω). We will 
onsider the initial solutionJournal of the ACM, Vol. V, No. N, Month 20YY.



Semanti
 Subtyping · 37to this equation. Con
retely, we de�ne D0 as the set of �nite terms generated bythe produ
tion d of the following grammar (c ranges over elements of C ):
d ::= c | (d, d) | {(d, d′), . . . , (d, d′)}
d′ ::= d | ΩNow, we need to de�ne a set-theoreti
 interpretation J_K0 : T → P(D0) su
hthat JtK0 = E(a)0 ∩ D0. Be
ause of the indu
tive stru
ture of elements of D0, thisequation a
tually de�nes the fun
tion J_K0. To see this, we will de�ne a binarypredi
ate (d : t) where d ∈ D0 and t ∈ T . The truth value of (d : t) is de�ned byindu
tion on the pair (d, t) ordered lexi
ographi
ally, using the indu
tive stru
turefor elements of D0, and the indu
tion prin
iple we mentioned earlier for types. Hereis the de�nition:

(c : b) = c ∈ BJbK
((d1, d2) : t1×××t2) = (d1 : t1) ∧ (d2 : t2)
({(d1, d

′
1), . . . , (dn, d′n)} : t1→→→t2) = ∀i. (di : t1) ⇒ (d′i : t2)

(d : t1∨∨∨t2) = (d : t1) ∨ (d : t2)
(d : ¬¬¬t) = ¬(d : t)
(d : t) = false otherwiseNow we de�ne JtK0 = {d ∈ D0 | (d : t)}. It is straightforward from this de�nitionto see that J_K0 is a set-theoreti
 interpretation and that it is stru
tural (and thuswell-founded). It is also 
lear that it is �nitely extensional. It is thus a model. Itremains to prove that this model is universal. This is a dire
t 
onsequen
e of thenext lemma.Lemma 6.33. If S 0 = {τ | JτK0 = ∅} and S is a simulation, then S ⊆ S 0.Proof: Let S be a simulation. We need to prove that ∀τ ∈ S . JτK0

= ∅, thatis:
∀d ∈ D0.∀τ ∈ S . d 6∈ JτK0We will prove this property by indu
tion on d ∈ D0. Let's take d ∈ D0 and

τ ∈ S . Sin
e S is a simulation, we also have τ ∈ ES , that is:
∀u ∈ U.∀(P, N) ∈ t. (P ⊆ Au ⇒ CP,N∩Au

u ) (6)where the 
onditions CP,N
u are as in De�nition 6.9.We need to prove that d 6∈ JτK0. The set JτK0 is equal to:

⋃

(P,N)∈τ

⋂

a∈P

JaK0\
⋃

a∈N

JaK0We prove that d does not belong to any of the terms of this union. Let (P, N) ∈
τ and u be the kind of d (as for values, it is straightforward to asso
iate aunique kind to ea
h element of D0). If a ∈ A \Au, then 
learly d 6∈ JaK0. As a
onsequen
e, if P 6⊆ Au, then d 6∈

⋂

a∈P JaK0\⋃a∈N JaK0. We now assume that
P ⊆ Au. We 
an apply (6). We obtain that CP,N∩Au

u holds. It remains to provethat:
d 6∈

⋂

a∈P

JaK0\
⋃

a∈N∩Au

JaK0Journal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.
u = basi
, d = c. The 
ondition CP,N∩Au

u is:
C ∩

⋂

b∈P

BJbK ⊆
⋃

b∈N

BJbKAs a 
onsequen
e, we get:
d 6∈

⋂

b∈P

BJbK\
⋃

b∈N

BJbK =
⋂

a∈P

JaK0\
⋃

a∈N∩Abasi
 JaK0

u = prod, d = (d1, d2). The 
ondition CP,N∩Au

u is:
∀N ′ ⊆ N ∩ Aprod.



































N

(

∧∧∧

t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

)

∈ S

∨

N





∧∧∧

t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2



 ∈ SFor ea
h N ′, we apply the indu
tion hypothesis to d1 and to d2. We get:
d1 6∈

t
∧∧∧

t1×××t2∈P

t1∧∧∧
∧∧∧

t1×××t2∈N ′

¬¬¬t1

|0

∨ d2 6∈

u
v ∧∧∧

t1×××t2∈P

t2∧∧∧
∧∧∧

t1×××t2∈N\N ′

¬¬¬t2

}
~

0That is:
d 6∈

(

⋂

t1×××t2∈P

Jt1K0\
⋃

t1×××t2∈N ′

Jt1K0
)

×





⋂

t1×××t2∈P

Jt2K0\
⋃

t1×××t2∈N\N ′

Jt2K0


A

ording to Lemma 6.4 and to Jt1K0 × Jt2K0 = Jt1×××t2K0, we thus get:
d 6∈

⋂

a∈P

JaK0\
⋃

a∈N∩Aprod JaK0

u = fun, d = {(d1, d
′
1), . . . , (dn, d′n)}. The 
ondition CP,N∩Au

u says that thereexists t0→→→s0 ∈ N su
h that, for all P ′ ⊆ P :
N

(

t0∧∧∧
∧∧∧

t→→→s∈P ′

¬¬¬t

)

∈ S ∨















P 6= P ′

N



(¬¬¬s0)∧∧∧
∧∧∧

t→→→s∈P\P ′

s



 ∈ SApplying the indu
tion hypothesis to the di and d′i (note that if d′i = Ω, then
d′i 6∈ JτK0 is trivial for all τ):

di 6∈

t
t0∧∧∧

∧∧∧

t→→→s∈P ′

¬¬¬t

|0

∨















P 6= P ′

d′i 6∈

u
v(¬¬¬s0)∧∧∧

∧∧∧

t→→→s∈P\P ′

s

}
~

0Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti
 Subtyping · 39Let us �rst assume that ∀i. (di ∈ Jt0K0 ⇒ d′i ∈ Js0K0). Then we have d ∈

Jt0→→→s0K0. Otherwise, let us 
onsider i su
h that di ∈ Jt0K0 and d′i 6∈ Js0K0. Theformula above gives for any P ′ ⊆ P :
(

di ∈
⋃

t→→→s∈P ′

JtK0
)

∨



P ′ 6= P ∧ d′i ∈ {Ω} ∪
⋃

t→→→s∈P\P ′

J¬¬¬sK0


Let's take P ′ = {t→→→s ∈ P | di 6∈ JtK0}. We have di 6∈
⋃

t→→→s∈P ′ JtK0, and thus
P ′ 6= P and d′i ∈ {Ω} ∪

⋃

t→→→s∈P\P ′ J¬¬¬sK0. We 
an thus �nd t→→→s ∈ P\P ′ su
hthat d′i 6∈ JsK0, and be
ause t→→→s 6∈ P ′, we also have di ∈ JtK0. We have thusproved that d 6∈ Jt→→→sK0 for some t→→→s ∈ P .In both 
ases, we get:
d 6∈

⋂

a∈P

JaK0\
⋃

a∈N∩Afun JaK0

6.9 De
idability of subtyping for the universal modelWe will now fo
us on Theorem 5.8. Let ≤0 denote the subtyping relation in-du
ed by the universal model J_K0. We have t1 ≤0 t2 ⇐⇒ Jt1\\\t2K0 = ∅ ⇐⇒

JN (t1\\\t2)K0 = ∅. Therefore we need to show how to de
ide, for a given normalform τ0, whether Jτ0K0 = ∅ or not. Thanks to the Lemma above, we get: Jτ0K0 = ∅if and only if there exists a simulation S su
h that τ0 ∈ S .A
tually, we 
an restri
t our attention to a �nite number of normal forms. Indeed,let us 
onsider the set A of all the atoms that o

ur in τ0 (in
luding atoms nested inother atoms). Thanks to the regularity of types, this set A is �nite. Write N (A)for the set of normal forms built only on top of these atoms, that is: N (A) =
P(P(A)×P(A)). This set is also �nite, and looking at De�nition 6.9, we see thatan interse
tion of a simulation and N (A) is again a simulation. As a 
onsequen
e,we get: Jτ0K0 = ∅ if and only if there exists a simulation S ⊆ N (A) su
h that
τ0 ∈ S . A naive algorithm 
an simply enumerate all the subset of N (A) whi
h
ontain τ0 and by applying De�nition 6.9 
he
k whether one of them is a simulation.Of 
ourse, there exist better algorithms. For instan
e, we 
an interpret thede�nition of a simulation as saturation rules: the algorithm starts from the set
{τ0} and tries to saturate it until it obtains a simulation. Be
ause of the disjun
-tions in the de�nition of a simulation, this algorithm needs to explore di�erentbran
hes. A bran
h 
annot be in�nite be
ause the algorithm will only 
onsiderthe normal forms in N (A) whi
h is a �nite set. There exists a simulation whi
h
ontains τ0 if and only if one of the bran
hes su

eeds in rea
hing a simulation. ThePh.D. thesis [Fris
h 2004℄ des
ribes two algorithms that improve over this simplesaturation-based strategy. These algorithms are those implemented in the CDu
e
ompiler [CDUCE ℄ and, as su
h, they are daily tested on large and 
omplex typessu
h as the XHTML DTD. Journal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.6.10 Non-universal modelsThe interpretation domain D of a �nitely extensional set-theoreti
 interpretationmust be a solution to the equation D = EfD. In the previous se
tion, we 
onsideredthe initial solution to this equation and we obtained a universal model. In thisse
tion, we will build non-universal models by 
onsidering non-initial solutions tothe equation D = EfD.A �rst attempt 
ould be to 
onsider in�nite (or maybe regular) terms generatedby the following produ
tions:
d ::= c | (d, d) | {(d, d′), . . . , (d, d′)}
d′ ::= d | ΩBut it is then impossible to build a �nitely extensional interpretation on this domain

D∞. Indeed, if J_K is su
h an interpretation, we 
onsider the element d ∈ D∞su
h that d = (d, d) and the type t su
h that t = (¬¬¬t)×××(¬¬¬t). Sin
e d ∈ D∞and JtK = E(t) ∩ D∞ = (D∞\JtK) × (D∞\JtK), we have: d ∈ JtK ⇐⇒ (d, d) ∈
(D∞\JtK) × (D∞\JtK) ⇐⇒ d 6∈ JtK. Contradi
tion.So, we will build domains whi
h are intermediate between D0 and D∞. We needto introdu
e some new notions.For an arbitrary set X , we de�ne D[X] as the set of �nite terms generated by theprodu
tion d below:

d ::= x | c | (d, d) | {(d, d′), . . . , (d, d′)}
d′ ::= d | Ωwhere x ranges over elements of X . In other words, D[X] is the initial solution Dto the equation D = X + C + D2 + Pf (D×DΩ). We de�ne the predi
ate ∆ ⊢ d : tfor d ∈ D[X], t ∈ T , ∆ ∈ P(T )X by indu
tion on the stru
ture of d:

(∆ ⊢ d : t1∨∨∨t2) = (∆ ⊢ d : t1) ∨ (∆ ⊢ d : t2)
(∆ ⊢ d : ¬¬¬t) = ¬(∆ ⊢ d : t)
(∆ ⊢ c : b) = c ∈ BJbK
(∆ ⊢ (d1, d2) : t1×××t2) = (∆ ⊢ d1 : t1) ∧ (∆ ⊢ d2 : t2)
(∆ ⊢ {(d1, d

′
1), . . . , (dn, d′n)} : t1→→→t2) = ∀i. (∆ ⊢ di : t1) ⇒ (∆ ⊢ d′i : t2)

(∆ ⊢ x : a) = a ∈ ∆(x)
(∆ ⊢ d : t) = false otherwiseA 
ongruen
e onD[X] is an equivalen
e relation≡ su
h that (d1

1 ≡ d2
1∧d1

2 ≡ d2
2) ⇒

(d1
1, d

1
2) ≡ (d2

1, d
2
2) and (∀i.d1

i ≡ d2
i ∧ d

′1
i ≡ d

′2
i ) ⇒ {(d1

1, d
′1
1 ), . . .} ≡ {(d2

1, d
′2
1 ), . . .}.If for all x, we 
hoose an element dx ∈ Ef(D[X]) = D[X]\X and if we 
onsiderthe smallest 
ongruen
e ≡ su
h that ∀x ∈ X.x ≡ dx, then the quotient D

[X]
≡ =

D[X]/ ≡ is su
h that Ef (D
[X]
≡ ) = D

[X]
≡ (modulo an impli
it bije
tion). Note thatthis quotient looks a lot like D0, ex
ept that there are some non well-foundedelements. Let's 
hoose some ∆ ∈ P(T )X . We require the predi
ate (∆ ⊢ d : t) tobe invariant under ≡, that is: d1 ≡ d2 ⇒ ((∆ ⊢ d1 : t) ⇐⇒ (∆ ⊢ d2 : t)). This isthe 
ase if and only if ∀x.(∆ ⊢ x : t) ⇐⇒ (∆ ⊢ dx : t), that is, if and only if:

(∗) ∀x ∈ X. ∆(x) = {t | ∆ ⊢ dx : t}When this property holds, we 
an de�ne J_K∆ : T → P(D
[X]
≡ ) by JtK∆ =Journal of the ACM, Vol. V, No. N, Month 20YY.
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{[d]≡ | (∆ ⊢ d : t)}, where [d]≡ denotes the equivalen
e 
lass of d modulo ≡.This de�nes a �nitely extensional set-theoreti
 interpretation (and thus a model).Of 
ourse, the di�
ulty is now to 
hoose X , the dx and ∆ su
h that (∗) holds.Let us 
onsider the 
ase where X = Z, and ea
h dk, k ∈ Z is de�ned using only
dk−1 in a uniform way. Formally, we 
onsider a �xed element δ ∈ D{•} su
h that
δ 6= • and we de�ne dk = δ[• := k − 1] (that is, the element of DZ obtained bysubstituting • by k − 1 in δ). If ∆ ∈ P(T )Z, then ∆ ⊢ dk : t is equivalent to
∆ ⊢ δ[• := k − 1] : t, and an indu
tion on the stru
ture of δ shows that this isequivalent to (• 7→ ∆k−1) ⊢ δ : t (from now on, we write ∆k instead of ∆(k)). Ifwe de�ne the operator F : P(T ) → P(T ) by F (T ) = {t | (• 7→ T ) ⊢ δ : t}, thenthe 
ondition (∗) 
an be rewritten as:

∀k ∈ Z. ∆k = F (∆k−1)Building su
h a sequen
e is not straightforward. We will rely on a te
hni
allemma.Lemma 6.34. Let A be a �nite set, f : A → A, and a0 ∈ A. There exists aunique periodi
 sequen
e (ak)k∈Z ∈ AZ su
h that:
∃n0 ∈ N.∀k ≥ n0.ak = fk(a0)(where fn denotes the n-th iterated 
omposition of f with itself). This sequen
e issu
h that:

∀k. ak+1 = f(ak)Proof: We 
onsider the sequen
e (an)n∈N de�ned by an = fn(a0). Sin
e Ais �nite, this sequen
e 
annot be inje
tive. We 
an �nd n0 < n1 su
h that
an0 = an1 . A re
urren
e gives an = an+(n1−n0) for any n ≥ n0: the sequen
e
(an)n∈N is ultimately periodi
. As a 
onsequen
e, there exists a unique sequen
e
(ak)k∈Z whi
h 
oin
ides ultimately with (an)n∈N.Clearly, the property ak+1 = f(ak) holds for k large enough, and be
ause (ak)k∈Zis periodi
, it holds for any k.Theorem 6.35. Let T 0 be a set of types. There exists a sequen
e (∆k)k∈Z su
hthat:�∀k ∈ Z.∆k+1 = F (∆k)�For any type t, the sequen
e of the truth values of (t ∈ ∆k)k∈Z is periodi
 and
∃n0 ∈ N.∀k ≥ n0.(t ∈ ∆k ⇐⇒ t ∈ F k(T 0))Proof: Sin
e the set P(T ) is not �nite, we 
annot use the lemma dire
tly. Theregularity of types will 
ome to the res
ue. We de�ne a 
one as a �nite set of typeswhi
h is 
losed under subterms de
omposition (that is, if the set 
ontains a type,it also 
ontains all its subterms). Any type belongs to some 
one be
ause a typeis a regular term. For a 
one C, we 
an de�ne the fun
tion FC : P(C) → P(C)by FC(T ) = F (T )∩C. We 
an apply the lemma to this fun
tion, be
ause P(C)is �nite. We write (T C

k )k∈Z for the sequen
e we obtain. Now, we observe on thede�nition of the ⊢ predi
ate that for t ∈ C, the assertion (• 7→ T ) ⊢ δ : t holdsJournal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.if and only if (• 7→ (T ∩ C)) ⊢ δ : t holds. This gives immediately the followingproperty:
∀T ⊆ T . C ∩ F (T ∩ C) = C ∩ F (T )From that, a re
urren
e gives Fn

C(T 0) = Fn(T 0) ∩ C. So, for t ∈ C, we have
t ∈ T C

k ⇐⇒ t ∈ F k(T0) when k is large enough. Sin
e the sequen
e (t ∈ T C
k )k∈Zis periodi
, it does not depend on the 
hoi
e of the 
one C whi
h 
ontains t.We 
an thus de�ne ∆k as the set of types t su
h that t ∈ T C

k for some/any
one C that 
ontains t. We have T C
k = ∆k ∩ C. It remains to 
he
k that

∆k+1 = F (∆k) for all k. Let t be a type and C a 
one whi
h 
ontains t.We have t ∈ ∆k+1 ⇐⇒ t ∈ T C
k+1 and a

ording to the lemma, we have

T C
k+1 = F (T C

k ) ∩ C = F (∆k) ∩ C. So: t ∈ ∆k+1 ⇐⇒ t ∈ F (∆k). Sin
ethis property holds for an arbitrary t, we get ∆k+1 = F (∆k) as expe
ted.We will give two examples of 
onstru
tions based on this theorem. First, we willbuild a model whi
h is not well-founded. In a well-founded model, the re
ursivetype t0 = t0×××t0 is empty. We will build a model where this type is not empty.We take δ = (•, •) and we build (∆k)k∈Z as given by the theorem. We thus get a�nitely extensional set-theoreti
 interpretation J_K∆ : T → P(DZ
≡). For any setof types T , we have t0 ∈ F (T ) ⇐⇒ (• 7→ T ) ⊢ δ : t0 ⇐⇒ (• 7→ T ) ⊢ (•, •) :

t0×××t0 ⇐⇒ (• 7→ T ) ⊢ • : t0 ⇐⇒ t0 ∈ T . So if we 
hoose T 0 su
h that t0 ∈ T 0,we have t0 ∈ ∆k for all k, from whi
h we 
on
lude that Jt0K∆ 
ontains the [k]≡ for
k ∈ Z. In parti
ular, it is not empty. To better understand our 
onstru
tion, we
an 
onsider the type t1 = (¬¬¬t1)×××(¬¬¬t1). We �nd that t1 ∈ F (T ) ⇐⇒ t1 6∈ T andwe dedu
e that Jt1K∆ 
ontains the [k]≡ for all even k ∈ Z (if t1 ∈ T 0) or for all
k ∈ Z (if t1 6∈ T 0). For more 
omplex re
ursive types, we might see other periodsthat 2.Now, we will build a stru
tural (and thus well-founded) model whi
h is notuniversal. We 
onsider the re
ursive type t0 = (0→→→0)\\\(t0→→→0). If J_K is a �nitelyextensional set-theoreti
 interpretation, a simple 
omputation gives:

Jt0K = {{(di, d
′
i) | ∃i. di ∈ Jt0K}}In parti
ular, this set is empty for the universal model built in the previous se
tion(be
ause its elements are �nite trees). We take δ = {(•, Ω)} and we pro
eed asabove, with the following 
omputation: t0 ∈ F (T ) ⇐⇒ (• 7→ T ) ⊢ δ : t0 ⇐⇒

(• 7→ T ) ⊢ {(•, Ω)} : (0→→→0)\\\(t0×××0) ⇐⇒ (• 7→ T ) ⊢ • : t0 ⇐⇒ t0 ∈ T . We
on
lude by taking T 0 su
h that t0 ∈ T 0 that the model J_K∆ is not universal.It remains to see that it is stru
tural. The de
omposition relation ⊲ is de�ned by
([d1]≡, [d2]≡) ⊲ [di]≡. Be
ause of the de�nition of δ, if [d]≡ ⊲ [d′]≡, then d must bea pair (d1, d2) in DZ × DZ . As a 
onsequen
e, the relation ⊲ is Noetherian.6.11 Towards type-
he
kingIn this se
tion, we introdu
e notions that will be useful to derive a type-
he
kingalgorithm. We also give the proof of Theorem 5.3 (lo
al exa
tness of the appli
ationrule). The existen
e results in this se
tion are e�e
tive (viz. it is possible to 
omputeJournal of the ACM, Vol. V, No. N, Month 20YY.
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ts whose existen
e is asserted) provided that the subtyping relation isde
idable.Lemma 6.36. Let t be a type su
h that t ≤ 1×××1. There exists a �nite set ofpairs of types π(t) ∈ Pf (T 2) su
h that:�t ≃
∨∨∨

(t1,t2)∈π(t)

t1×××t2�∀(t1, t2) ∈ π(t). t1 6≃ 0 ∧ t2 6≃ 0Proof: We 
an write:
t ≃

∨∨∨

(P,N)∈N (t) s.t. P⊆Aprod(1×××1)∧∧∧ ∧∧∧a∈P

a\\\
∨∨∨

a∈N∩Aprod aUsing Lemma 6.4, we 
an rewrite any interse
tion of produ
t types and 
omple-ment of produ
t types as a union of produ
t types P ′ ⊆ Aprod:
t ≃

∨∨∨

a∈P ′

aWe simply de�ne π(t) as {(t1, t2) | t1×××t2 ∈ P ′ ∧ t1 6≃ 0 ∧ t2 6≃ 0}.Lemma 6.37. Let t be a type su
h that t ≤ 0→→→1. Then there exists a �nite setof pairs of types ρ(t) ∈ Pf (T 2) and a type Dom(t) su
h that:
∀t1, t2. (t ≤ t1→→→t2) ⇐⇒

{

t1 ≤ Dom(t)
∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ t2)Proof: We 
an write:

t ≃
∨∨∨

(P,N)∈N (t) s.t. P⊆Afun(0→→→1)∧∧∧ ∧∧∧
a∈P

a\\\
∨∨∨

a∈N∩Afun aClearly, the Lemma is true for t ≃ 0 (with Dom(t) = 1 and ρ(t) = ∅), and if itholds for t and t′, then it also holds for t∨∨∨t′ (with Dom(t∨∨∨t′) = Dom(t)∧∧∧Dom(t′)and ρ(t∨∨∨t′) = ρ(t) ∪ ρ(t′)). We 
an thus assume without loss of generality that thas the form:
t =

∧∧∧

a∈P

a\\\
∨∨∨

a∈N

awith P, N ⊆ Afun, P 6= ∅, and t 6≃ 0. Lemma 6.13 gives: t ≤ t1→→→t2 ⇐⇒
∧∧∧

a∈P a ≤ t1→→→t2 and Lemma 6.8 tells us how to de
ompose this subtyping into:
∀P ′ ⊆ P.

(

t1 ≤
∨∨∨

s1→→→s2∈P ′

s1

)

∨



P 6= P ′ ∧
∧∧∧

s1→→→s2∈P\P ′

s2 ≤ t2



We 
an thus de�ne: Dom(t) =
∨∨∨

s1→→→s2∈P

s1Journal of the ACM, Vol. V, No. N, Month 20YY.
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ρ(t) = {(

∨∨∨

s1→→→s2∈P ′

s1,
∧∧∧

s1→→→s2∈P\P ′

s2) | P ′ ( P}

Corollary 6.38. Let t and t1 be two types. If t ≤ t1→→→1, then t ≤ t1→→→t2 has asmallest solution t2 whi
h we write t • t1.Proof: Sin
e t ≤ t1→→→1, we have t1 ≤ Dom(t). The assertion t ≤ t1→→→t2 is thusequivalent to:
∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ t2)that is:




∨∨∨

(s1,s2)∈ρ(t) s.t. (t1 6≤s1)

s2



 ≤ t2We write t • t1 for the left-hand side of this equation.We 
an now prove Theorem 5.3.Proof: Let t, t1 be two types su
h that t ≤ t1→→→1. Clearly, if ⊢ vf : t and
⊢ vx : t1, then ⊢ vfvx : t • t1, and thus, subje
t redu
tion gives ⊢ v : t • t1 if
vfvx

⋆
; v.Let us prove the opposite impli
ation:

∀v. ⊢ v : t • t1 ⇒ ∃vf , vx. (vfvx
⋆
; v) ∧ (⊢ vf : t) ∧ (⊢ vx : t1)This property is 
learly true for t ≃ 0, and if it is true for t and t′, then it istrue for t∨∨∨t′ (be
ause 0 • t1 ≃ 0 and (t∨∨∨t′) • t1 ≃ (t • t1)∨∨∨(t′ • t1)). We 
an thusassume, as in the proof of Lemma 6.37, that t has the form:

t =
∧∧∧

a∈P

a\\\
∨∨∨

a∈N

awith P, N ⊆ Afun, P 6= ∅, and t 6≃ 0. Following the same argument as in theproof of Lemma 6.37, we get:
t • t1 =

∨∨∨

P ′(P s.t. t1 6≤
∨∨∨

t′

1
→→→t′

2
∈P ′

t′
1





∧∧∧

t′
1
→→→t′

2
∈P\P ′

t′2



and
t1 ≤

∨∨∨

t′
1
→→→t′

2
∈P

t′1Let v be a value of type t • t1. We 
an �nd P ′ ( P su
h that t1 6≤
∨∨∨

t′
1
→→→t′

2
∈P ′ t′1and ⊢ v :

∧∧∧

t′
1
→→→t′

2
∈P\P ′ t′2. Let vx be a value of type t1\\\

∨∨∨

t′
1
→→→t′

2
∈P ′ t′1 and vf theJournal of the ACM, Vol. V, No. N, Month 20YY.
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tion
µf(P ).λx. (y = x ∈

∨∨∨

t′
1
→→→t′

2
∈P ′

t′1 ? fy | v)It is then easy to 
he
k that ⊢ vf : t and vfvx
⋆
; v.6.12 Type-
he
king algorithmIn this se
tion, we assume that the subtyping relation ≤ is de
idable and we give atype-
he
king algorithm for our type system.The key di�
ulty to over
ome is that the set of types t su
h that Γ ⊢ e : t, for agiven environment Γ and a given expression e has no smallest element in general.Indeed, 
onsider the 
ase where e is a well-typed abstra
tion. The (abstr) ruleallows us to 
hoose an arbitrary number of in
omparable arrow types.We will thus introdu
e a new synta
ti
 
ategory, 
alled type s
heme to denote su
hsets of types. The syntax for type s
hemes is given by the following produ
tions:t ::= t t ∈ T

| [t1→→→s1; . . . ; tn→→→sn] n ≥ 1; ti, si ∈ T

| t1 ⊗ t2
| t1 > t2
| ΩWe will write [ti→→→si]i=1..n for [t1→→→s1; . . . ; tn→→→sn]. We de�ne the fun
tion {{{_}}}whi
h maps s
hemes to sets of types:

{{{t}}} = {s | t ≤ s}

{{{[ti→→→si]i=1..n}}} = {s | ∃s0 =
∧∧∧

i=1..n

(ti→→→si) ∧
∧∧∧

j=1..m

¬¬¬(t′j→→→s′j). 0 6≃ s0 ≤ s}

{{{t1 ⊗ t2}}} = {s | ∃t1 ∈ {{{t1}}}, t2 ∈ {{{t2}}}. t1×××t2 ≤ s}
{{{t1 > t2}}} = {s | ∃t1 ∈ {{{t1}}}, t2 ∈ {{{t2}}}. t1∨∨∨t2 ≤ s}
{{{Ω}}} = ∅Lemma 6.39. Let t be a type s
hema. Then {{{t}}} = ∅ if and only if Ω appearsin t. Moreover, {{{t}}} is 
losed under subsumption (t ∈ {{{t}}} ∧ t ≤ t′ ⇒ t′ ∈ {{{t}}}) andinterse
tion (t ∈ {{{t}}} ∧ t′ ∈ {{{t}}} ⇒ t∧∧∧t′ ∈ {{{t}}}).Proof: Straightforward indu
tion on the stru
ture of t.Lemma 6.40. Let t be a type s
heme and t0 a type. We 
an 
ompute a types
heme, written t0 ? t, su
h that:

{{{t0 ? t}}} = {s | ∃t ∈ {{{t}}}. t0∧∧∧t ≤ s}Proof: We de�ne t0 ? t by indu
tion on t. If t is a type t, we take t0 ? t = t0∧∧∧t.If t is a union t1∨∨∨t2, we distribute: t0 ? t = (t0 ? t1) > (t0 ? t2). If t is Ω, orif {{{t}}} = ∅, we take t0 ? t = Ω. For the two remaining 
ases, we assume thatJournal of the ACM, Vol. V, No. N, Month 20YY.
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{t} 6= ∅, and we observe that:

t0 ≃
∨∨∨

(P,N)∈N (t)

∧∧∧

a∈P

a∧∧∧
∧∧∧

a∈N

¬¬¬aWe 
an thus see t0 as a Boolean 
ombination built with 0, 1, ∨∨∨, ∧∧∧, atoms and
omplement of atoms. For t0 ≃ 0, we take t0 ? t = 0. For t0 ≃ 1, we take
t0 ? t = t. For t0 ≃ t1∨∨∨t2, we take t0 ? t = (t1 ? t) > (t2 ? t). For t0 ≃ t1∧∧∧t2,we take t0 ? t = t1 ? (t2 ? t). It remains to deal with the 
ase of an atom or a
omplement of an atom.For the 
ase t = t1 ⊗ t2, we take:

(t1×××t2) ? (t1 ⊗ t2) = (t1 ? t1) ⊗ (t2 ? t2)
¬¬¬(t1×××t2) ? (t1 ⊗ t2) = ((¬¬¬t1 ? t1) ⊗ t2) > (t1 ⊗ (¬¬¬t2 ? t2))and if a ∈ A \Aprod:

a ? (t1 ⊗ t2) = 0
¬¬¬a ? (t1 ⊗ t2) = (t1 ⊗ t2)For the 
ase t = [ti→→→si]i=1..n, we take:

(t→→→s) ? [ti→→→si]i=1..n =















[ti→→→si]i=1..n if ∧∧∧

i=1..n

ti→→→si ≤ t→→→s0 if ∧∧∧

i=1..n

ti→→→si 6≤ t→→→s

¬¬¬(t→→→s) ? [ti→→→si]i=1..n =















0 if ∧∧∧

i=1..n

ti→→→si ≤ t→→→s

[ti→→→si]i=1..n if ∧∧∧

i=1..n

ti→→→si 6≤ t→→→sand if a ∈ A \Afun:
a ? [ti→→→si]i=1..n = 0

¬¬¬a ? [ti→→→si]i=1..n = [ti→→→si]i=1..n

Lemma 6.41. Let t be a type s
heme and t a type. We 
an de
ide the assertion
t ∈ {{{t}}}, whi
h we also write t ≤ t.Proof: First, we make the observation that t ∈ {{{t}}} if and only if 0 ∈ {{{(¬¬¬t) ? t}}}.Indeed: 0 ∈ {{{(¬¬¬t) ? t}}} ⇐⇒ ∃s ∈ {{{t}}}. (¬¬¬t)∧∧∧s ≤ 0 ⇐⇒ ∃s ∈ {{{t}}}. s ≤ t ⇐⇒

t ∈ {{{t}}}. As a 
onsequen
e, we only need to deal with the 
ase t = 0. If {{{t}}} = ∅,then 0 ∈ {{{t}}} does not hold. Otherwise, we 
on
lude by indu
tion over theJournal of the ACM, Vol. V, No. N, Month 20YY.
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ture of t: 0 ∈ {{{t}}} ⇐⇒ t ≃ 00 6∈ {{{[ti→→→si]i=1..n}}}0 ∈ {{{t1 ⊗ t2}}} ⇐⇒ (0 ∈ {{{t1}}}) ∨ (0 ∈ {{{t2}}})0 ∈ {{{t1 > t2}}} ⇐⇒ (0 ∈ {{{t1}}}) ∧ (0 ∈ {{{t2}}})0 6∈ {{{Ω}}}Lemma 6.42. Let t be a type s
heme and i ∈ {1, 2}. We 
an 
ompute a types
heme πi(t) su
h that
{{{πi(t)}}} = {s | ∃t1×××t2 ∈ {{{t}}}.ti ≤ s}Proof: Let's take for instan
e i = 1. Note that ∃t1×××t2 ∈ {{{t}}}.t1 ≤ s is equivalentto s×××1 ∈ {{{t}}}.If t 6≤ 1×××1, then we take {{{π1(t)}}} = Ω. Otherwise, we pro
eed by indu
tionover the stru
ture of t. For t = t1 > t2, we take π1(t) = π1(t1) > π1(t2). Fort = t1 ⊗ t2, we take π1(t) = t1. For t = t, we take π1(t) =

∨∨∨

(t1,t2)∈π(t) t1. Theother 
ases are impossible.Lemma 6.43. Let t and t1 be two type s
hemes. We 
an 
ompute a type s
hemet • t1 su
h that
{{{t • t1}}} = {s | ∃t1→→→t2 ∈ {{{t}}}.t1 ∈ {{{t1}}} ∧ t2 ≤ s}Proof: We pro
eed by indu
tion over the stru
ture of t. For t = t1 > t2, wetake t • t1 = t1 • t1 > t2 • t1. For t = t1 ⊗ t2 or t = Ω, we take t • t1 =

Ω. For t = [t′i→→→s′i]i=1..n, we take t • t1 = (
∧∧∧

i=1..n(t′i→→→s′i)) • t1, so the onlyremaining 
ase is t = t. We observe that ∃t1→→→t2 ∈ {{{t}}}.t1 ∈ {{{t1}}} ∧ t2 ≤ s isequivalent to ∃t1 ∈ {{{t1}}}.t ≤ t1→→→s. A

ording to Lemma 6.37, this is equivalentto: ∃t1 ∈ {{{t1}}}.t1 ≤ Dom(t) ∧ ∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ s). We now provethat this is equivalent to t1 ≤ Dom(t) ∧ ∀(s1, s2) ∈ ρ(t). (t1 ≤ s1) ∨ (s2 ≤ s).The ⇒ impli
ation is immediate. Let us 
he
k the ⇐ impli
ation. For every
(s1, s2) ∈ ρ(t) su
h that s2 6≤ s, we have t1 ≤ s1 and it is thus possible to �nd atype t′1 ∈ {{{t1}}} su
h that t′1 ≤ s1. We de�ne t1 as the interse
tion of all these t′1and of Dom(t), and we thus have t1 ∈ {{{t1}}} ∧ t1 ≤ Dom(t) ∧ ∀(s1, s2) ∈ ρ(t). (t1 ≤
s1)∨ (s2 ≤ s). To 
on
lude, we de�ne t • t1 as Ω if t1 6≤ Dom(t), and otherwise as:

∨∨∨

(s1,s2)∈ρ(t) s.t. (t1 6≤s1)

s2

We 
an now des
ribe a type-
he
king algorithm. We de�ne a s
heme environmentas a �nite mapping � from variables to type s
hemes su
h that {{{�(x)}}} 6= ∅ forevery x in the domain of �. The type-
he
king algorithm is formalized as a totalJournal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.fun
tion whi
h maps a s
heme environment � and an expression e to a s
hemewritten �[e]. This fun
tion is de�ned by indu
tion on the stru
ture of e by thefollowing equations:


































































































































�[c] = bc�[(e1, e2)] = �[e1] ⊗ �[e2]�[µf(t1→→→s1; . . . ; tn→→→sn).λx.e] =

{ t if ∀i = 1..n. si ≤ si

Ω otherwisewhere { t = [ti→→→si]i=1..nsi = ((f : t), (x : ti),�)[e] (i = 1..n)�[x] =

{ �(x) if �(x) is de�ned
Ω otherwise�[πi(e)] = πi(�[e])�[e1e2] = �[e1] • �[e2]�[(x = e ∈ t ? e1|e2)] = s1 > s2where 















t0 = �[e]t1 = t ? t0t2 = (¬¬¬t) ? t0si =







((x : ti),�)[ei] if ti 6≤ 0,{{{ti}}} 6= ∅0 if ti ≤ 0
Ω if {{{ti}}} = ∅

(i = 1..2)We are now going to prove soundness and 
ompleteness of the algorithm. If �is a s
heme environment and Γ is a typing environment, we write � ≤ Γ when �and Γ have the same domain and for all x in this domain �(x) ≤ Γ(x). If Γ1 and
Γ2 are two typing environment, we de�ne Γ1∧∧∧Γ2 by (Γ1∧∧∧Γ2)(x) = Γ1(x)∧∧∧Γ2(x)(unde�ned when one of the Γi(x) is not de�ned). Note that if � ≤ Γ1 and � ≤ Γ2,then � ≤ Γ1∧∧∧Γ2.Lemma 6.44 (Corre
tness). If �[e] ≤ t, then there exists Γ ≥ � su
h that
Γ ⊢ e : t.Proof: By indu
tion over the stru
ture of e.

e = c. We have bc ≤ t, and thus ⊢ c : t. We 
an take for Γ an arbitrary typingenvironment su
h that Γ ≥ �. We use the ∧∧∧ operator on typing environmentsand Lemma 6.14 to re
on
ile di�erent Γ's given by several uses of the indu
tionhypothesis.
e = x. We have Γ(x) ≤ t. We 
an 
hoose Γ ≥ � su
h that Γ(x) = t.
e = (e1, e2). We have �[e1]⊗�[e2] ≤ t. We 
an thus �nd t1 ≥ �[e1] and t2 ≥ �[e2]su
h that t1×××t2 ≤ t. The indu
tion hypothesis gives Γ1 ≥ � su
h that Γ1 ⊢ e1 : t1and Γ2 ≥ � su
h that Γ2 ⊢ e2 : t2. We take Γ = Γ1∧∧∧Γ2.
e = e1e2. We have �[e1] • �[e2] ≤ t. We 
an thus �nd t1, t2 su
h that t1→→→t2 ≥�[e1], t1 ≥ �[e2] and t2 ≤ t. The indu
tion hypothesis gives Γ1 ≥ � su
h that
Γ1 ⊢ e1 : t1→→→t2 and Γ2 ≥ � su
h that Γ2 ⊢ e2 : t1. We take Γ = Γ1∧∧∧Γ2.
e = πi(e

′). We have πi(�[e′]) ≤ t. We 
an thus �nd t1, t2 su
h that t1×××t2 ≥ �[e′]and ti ≤ t. The indu
tion hypothesis gives Γ ≥ � su
h that Γ ⊢ e′ : t1×××t2. WeJournal of the ACM, Vol. V, No. N, Month 20YY.
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 Subtyping · 49dedu
e that Γ ⊢ e : ti and by subsumption Γ ⊢ e : t.
e = (x = e′ ∈ t′ ? e1 | e2). We take t0 = �[e′], t1 = t′ ? t0 and t2 = (¬¬¬t′) ? t0.We also take s1 and s2 as in the 
orresponding 
ase of the de�nition of �[e]. Wehave s1 > s2 ≤ t. We 
an thus �nd s1 ≥ s1 and s2 ≥ s2 su
h that t ≥ s1∨∨∨s2. Let'stake i ∈ {1, 2}. We will de�ne a type ti. We have si 6= Ω sin
e si ≥ si. Two 
asesremain. If ti 6≤ 0, we have si = ((x : ti),�)[ei]. The indu
tion hypothesis gives
Γi ≥ � and ti ≥ ti su
h that (x : ti), Γi ⊢ ei : si. Otherwise, we have si = 0 andwe take ti = 0. In both 
ases, we have ti ≥ ti.Let's 
onsider the type t0 = (t1∧∧∧t′)∨∨∨(t2∧∧∧¬¬¬t′). We now prove that t0 ≥ t0.Sin
e t1 ≥ t1 = t′ ? t0, there exists t′1 ≥ t0 su
h that t′∧∧∧t′1 ≤ t1. Similarly,we have t′2 ≥ t0 su
h that (¬¬¬t′)∧∧∧t′2 ≤ t2. We get t0 ≥ (t′∧∧∧t′1)∨∨∨((¬¬¬t′)∧∧∧t′2) ≥
(t′∧∧∧t′1∧∧∧t′2)∨∨∨((¬¬¬t′)∧∧∧t′1∧∧∧t′2) ≃ t′1∧∧∧t′2 ≥ t0.Sin
e t0 ≥ t0, the indu
tion hypothesis gives Γ0 ≥ � su
h that Γ0 ⊢ e′ : t0. Let's
onsider the types t′′1 = t0∧∧∧t ≤ t1 and t′′2 = t0∧∧∧(¬¬¬t) ≤ t2. By 
onsidering theinterse
tion of Γ0 and of Γ1 and Γ2 when they are de�ned, we �nd Γ ≥ � su
hthat Γ ⊢ e′ : t0 and (xi : t′′i ), Γ ⊢ ei : si when ti 6≤ 0. The rule (case) gives
Γ ⊢ e : s1∨∨∨s2. By subsumption, we get Γ ⊢ e : t.
e = µf(t1→→→s1; . . . ; tn→→→sn).λx.e′. We take t and si as in the de�nition of the
orresponding 
ase for �[e]. Sin
e �[e] 6= Ω, we get t ≤ t and si ≤ si for all
i = 1..n. The indu
tion hypothesis gives, for ea
h i, an environment Γi ≥ �, andtwo types ti ≥ t, t′′i ≥ ti su
h that (f : ti), (x : t′′i ), Γi ⊢ e′ : si.We de�ne the type t′ as ∧∧∧i=1..n ti∧∧∧t. We have t′ ≥ t = [ti→→→si]i=1..n. We 
anthus �nd a type t′′ of the form t′′ =

∧∧∧

i=1..n ti→→→si∧∧∧
∧∧∧

j=1..m¬¬¬(t′j→→→s′j) su
h that
t′ ≥ t′′ and t′′ 6≃ 0.If we take for Γ the interse
tion of all the Γi, we obtain (f : t′′), (x : ti), Γ ⊢ e′ : sifor all i from whi
h we 
on
lude Γ ⊢ e : t′′ and thus Γ ⊢ e : t.Lemma 6.45 (Completeness). If � ≤ Γ and Γ ⊢ e : t then �[e] ≤ t.Proof: By indu
tion over the derivation of Γ ⊢ e : t and 
ase disjun
tion overthe last rule used in this derivation. The proof is me
hani
al. We give the detailsonly for the rule (case).

Γ ⊢ e : t0

{

t0 6≤ ¬¬¬t ⇒ (x : t0∧∧∧t), Γ ⊢ e1 : s
t0 6≤ t ⇒ (x : t0\\\t), Γ ⊢ e2 : s

Γ ⊢ (x = e ∈ t ? e1|e2) : sWe assume that � ≤ Γ and we take t0,t1, t2,s1,s2 as in the de�nition of �[(x =
e ∈ t ? e1|e2)]. We need to prove that s1 > s2 ≤ s, that is s1 ≤ s and s2 ≤ s. Wewill do the proof for s1 (the proof for s2 is similar).The indu
tion hypothesis gives t0 = �[e] ≤ t0, from whi
h we get t1 ≤ t∧∧∧t0. Ift1 ≤ 0, then s1 = 0 ≤ s. Otherwise, sin
e {{{t1}}} 6= ∅, we have s1 = ((x : t1),�)[e1].We have t0 6≤ ¬¬¬t, otherwise t1 ≤ 0. We thus have a sub-derivation (x : t0∧∧∧t), Γ ⊢
e1 : s. The indu
tion hypothesis, applied to the environment (x : t1),� givess1 ≤ s. Journal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.By 
ombining the two previous lemmas, we get an exa
t 
hara
terization of thetype-
he
king algorithm in terms of the type system.Theorem 6.46. For any s
heme environment � and expression e:
{{{�[e]}}} = {t | ∃Γ ≥ �.Γ ⊢ e : t}Corollary 6.47. Let Γ be a typing environment. It 
an also be seen as as
heme environment. For any expression e and any type t, we have:

Γ ⊢ e : t ⇐⇒ Γ[e] ≤ tAs a spe
ial 
ase, the expression e is well-typed under Γ if and only if {{{Γ[e]}}} 6= ∅.To 
on
lude with the de
idability of the type system, we observe that the asser-tion {{{Γ[e]}}} 6= ∅ is de
idable (Lemma 6.39).7. COMMENTARIESIn Se
tion 2 we des
ribed the basi
 intuitions and we gave an overview of ourapproa
h. In this se
tion we 
omment and explain the intuition and motivationsthat underlie some more te
hni
al 
hoi
es we made in the formal development ofthe work.7.1 What does the 
losing-the-
ir
le theorem mean?Theorem 5.5 is a ni
e and important property about our system. It means thatwhenever the interpretation of types as sets of values is a model, it indu
es the samesubtyping relation as the bootstrap model; as a 
onsequen
e, there is no point usingthis model as a new bootstrap model and iterating the whole pro
ess again. Thetheorem is also an indi
ation that the typing rules are somewhat 
oherent withthe de�nition of models. It is a quality 
he
k, but a limited one: we should resistthe temptation to read too mu
h from the theorem. Let us be expli
it on thispoint: Theorem 5.5 does not say that the de�nition of models is �valid� in anyway. As a matter of fa
t, it is possible to 
hange the de�nition of models in verybogus ways and still be able to prove the theorem. If we follow 
losely the formaldevelopment, we see that we 
ould a
tually 
hange De�nition 4.3 and take anyde�nition for E(t1→→→t2) as long as Lemma 6.13 holds. For instan
e, we 
ould eventake a de�nition that makes arrow types 
ovariant in their domain, e.g. E(t1→→→t2) =
P(Jt1K) × P(Jt2K). Then, of 
ourse, the subje
t redu
tion theorem would fail tohold. We 
ould even see purely synta
ti
al eviden
es that something goes wrong(without introdu
ing the operational semanti
s). With the bogus de�nition above,we would indeed see that:(1) the following rule is derivable:

Γ ⊢ e1 : t1 → t2 Γ ⊢ e2 : t

Γ ⊢ e1e2 : t2
(appl′)(whi
h means that the type system does not 
he
k the type for the argumentin fun
tion appli
ations);Journal of the ACM, Vol. V, No. N, Month 20YY.
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tion rule) would fail to hold in general(but it would still hold for values). Indeed, the 
ase for appli
ations in its proofrelies on the 
ontravarian
e of arrow types in their domain.It is interesting to look at how Theorem 5.5 
ould have failed with the 
urrentde�nition of models. The easiest way to break the theorem is the typing rule forabstra
tions. If we did not allow several fun
tion types to appear in λ-abstra
tion,or if we did not allow negation of arrow types to appear in the type assigned to the
λ-abstra
tion, then Theorem 5.5 would not hold.The fa
t that the de�nition of models (and thus subtyping) is �valid� with re-spe
t to our 
al
ulus is expressed by results from Se
tion 5.1: type-safety says thatsubtyping is sound with respe
t to the semanti
s of the 
al
ulus, and Theorem 5.3gives some further eviden
e that the whole system is 
oherent. As a �nal noteabout Theorem 5.5, we should emphasise here again that even if the interpretationof types is not a model (that is, if the bootstrap model is not well-founded), thentype-safety still holds.7.2 On the pres
riptive nature of types for λ-abstra
tionsThe λ-abstra
tions in our 
al
ulus 
ome with an expli
it signature (a �nite sequen
eof arrow types). This makes it possible to de
ide whether a fun
tional value has type
t→→→s or not, without looking at the fun
tion body and without relying on the typingjudgement. Su
h a de
ision has to be made at run-time to redu
e a dynami
 type-dispat
h against a type su
h as t→→→s. So, the result of type-dispat
h 
an depend onthe expli
it type annotations on λ-abstra
tions. For instan
e, the expression (g =
(µf(true→→→true).λx.x) ∈ (false→→→false) ? 1 | 0) evaluates to 0 (be
ause true→→→true 6≤false→→→false), but (g = (µf(false→→→false).λx.x) ∈ (false→→→false) ? 1 | 0) evaluates to
1. This observation gives a �paradox� that we would obtain if we tried to de�nea Curry-style type assignment for λ-abstra
tions, that is, if we did not in
ludean expli
it signature. Indeed, a fun
tion 
ould 
he
k its own type and behavedi�erently a

ording to it. Consider for instan
e the value v = µf.λx.(g = f ∈true→→→true ? false | true). Then v maps true to true if and only if it does not havetype true→→→true.7.3 On the typing rule for abstra
tionsThe negative arrow types in the typing rule for λ-abstra
tions may look surprising.Indeed this rule 
an assign to the fun
tional value µf(true→→→true).λx.x the type
¬¬¬(false→→→false) even if semanti
ally, the fun
tion maps the value false to itself. Wehave already explained in Se
tion 3.3 that we need these negative arrow types inorder to have the property that every value has type t or ¬¬¬t for any type. Theprevious se
tion showed a di�erent problem that arises if we try to get rid of theexpli
it signature on λ-abstra
tions.If we rely on the typing judgement where the rule is modi�ed so as to disallownegative arrow types but without 
hanging the operational semanti
s, the 
al
ulustrivially remains type-safe. In this 
ase, the redu
tion rule for the dynami
 typedispat
h must use the old judgement, so that we always have ⊢ v : t or ⊢ v : ¬¬¬t.This suggests a variation of the (abstr) rule whi
h would allow negative arrowJournal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.types only if the abstra
tion is 
losed (the only free variables of the body 
an bethe fun
tion name or the argument name). This 
an be thought as some kindof value-restri
tion. With this new typing judgement, we preserve all the formalproperties of our 
al
ulus, in
luding type preservation and Theorem 5.4, be
ausethe new typing judgement 
oin
ides with the old one on values.7.4 On the admissibility of a union ruleLemma 6.15 says that the following rule is admissible in our type system:
Γ ⊢ e : t1 Γ ⊢ e : t2

Γ ⊢ e : t1∧∧∧t2One might 
onsider the following dual rule for union types:
Γ, (x : t1) ⊢ e : t Γ, (x : t2) ⊢ e : t

Γ, (x : t1∨∨∨t2) ⊢ e : t
(union)Sin
e we have adopted a 
all-by-value semanti
s, variables in the environmentare meant to be substituted by values, and sin
e a value of type t1∨∨∨t2 has type t1or type t2, this rule is semanti
ally sound (the substitution lemma would need to berestri
ted to values, though). However, this rule, whi
h 
orresponds to reasoningby 
ase disjun
tion, is not admissible in our system: it would allow us to derive

(x : bool) ⊢ (x, x) : true×××true∨∨∨false×××false, while the smallest type the 
urrentsystem 
an assign to (x, x) under this typing environment is bool×××bool.Therefore the question about the opportunity of adding su
h a rule to our systemnaturally arises. We de
ided not to do so sin
e we 
an simulate the union rule withan expli
it annotation that drives the 
ase disjun
tion. Let us write 
ase(x, t, e) forthe expression (y = x ∈ t ? e | e) (for y not free in e). Then the following rule isadmissible (and even derivable) in our system:
Γ, (x : t1) ⊢ e : t Γ, (x : t2) ⊢ e : t

Γ, (x : t1∨∨∨t2) ⊢ 
ase(x, t1, e) : tNote that e and 
ase(x, t1, e) are observationally equivalent (that is, they areindistinguishable when embedded in ground 
ontexts of basi
 type: see, for instan
e,De�nition 6.4.1 page 132 in [Amadio and Curien 1998℄). Then, repla
ing e with
ase(x, t1, e) is just an extra hint for the type-
he
ker and it does not break existingtyping derivations. Indeed, the following rule is admissible:
Γ ⊢ e : t x ∈ Γ

Γ ⊢ 
ase(x, t1, e) : tSo, if we have a derivation for a judgement Γ ⊢ e : t in the system extendedwith the rule (union), it is possible to 
ompute an expression e′ observationallyequivalent to e and su
h that Γ ⊢ e′ : t is derivable in the 
urrent system (viz.,without (union)). This expression is obtained by wrapping some sub-expressionsof e with the 
ase(_) operator, in 
orresponden
e of the o

urren
es of the (union)rule in the original derivation. Sin
e the same sub-expression 
an be typed severalJournal of the ACM, Vol. V, No. N, Month 20YY.
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tions), it is important that 
ase(_) does not breakexisting derivations.Finally it is interesting to noti
e that Pier
e's union elimination rule [Pier
e 1991℄
Γ ⊢ e : u1∨∨∨u2 Γ, x : u1 ⊢ e′ : s Γ, x : u2 ⊢ e′ : s

Γ ⊢ 
ase e of x ⇒ e′ : s
(Union-E)is a spe
ial 
ase of our (
ase) rule given in Se
tion 3.3 where e1 = e2 = e′,

t0 = u1∨∨∨u2, and t is either u1 or u2 (modulo an appli
ation of the Strengthen-ing Lemma�Lemma 6.14, Se
tion 6.3�when the interse
tion of u1 and u2 is notempty).7.5 On the reason why re
ursion is restri
ted to fun
tionsOne might wonder why re
ursion is restri
ted to fun
tions in our 
al
ulus. Imaginewe had arbitrary re
ursion on expressions. Then the expression µx.(x, x) shouldbe a (re
ursive) value. We 
an 
onsider a re
ursive type t = (¬¬¬t)×××(¬¬¬t) and lookat whether the value v = µx.(x, x) has type t or not. Clearly, we expe
t to have
⊢ v : t if and only if ⊢ (v, v) : t, whi
h is equivalent to ⊢ (v, v) : (¬¬¬t)×××(¬¬¬t), and thusto ⊢ v : ¬¬¬t. But sin
e v is a value, this is equivalent to ¬(⊢ v : t). This paradoxjusti�es that we 
ombine re
ursion and λ-abstra
tion in a single 
onstru
tion.As an aside, note that restri
ting re
ursion to single abstra
tions is enough tolet us en
ode mutually re
ursive fun
tions. For instan
e, assume that we want tode�ne two mutually re
ursive fun
tions:

f1(t1→→→s1; . . . ; tn→→→sn).λx.e1

f2(t
′
1→→→s′1; . . . ; t

′
m→→→s′m).λy.e2where the body of the two fun
tions 
an refer to both f1 and f2. A possible en
odingof the de�nition above is

µf({1}→→→
∧∧∧

i=1..n ti→→→si; {2}→→→
∧∧∧

j=1..m t′j→→→s′j).

λc.(c = c ∈ {1} ?
µf1(t1→→→s1; . . . ; tn→→→sn).λx.e1σ |
µf2(t

′
1→→→s′1; . . . ; t

′
m→→→s′m).λy.e2σ)where {1} and {2} are two basi
 singleton types (with asso
iated 
onstants 1 and

2) and the substitution σ repla
es f1 with (f 1) and f2 with (f 2). Other en
odingsare possible and left as an exer
ise to the reader.8. RELATED WORKThis work started from our desire to extend the work by Hosoya and Pier
e onXDu
e [Hosoya and Pier
e. 2003℄ with �rst-
lass fun
tions and arrow types, there-fore it is natural to start this se
tion with it. XDu
e is a domain spe
i�
 languagespe
ially designed to write XML transformations. Values are fragments of XMLdo
uments, whi
h 
an be des
ribed by so-
alled regular expression types [Hosoyaet al. 2000℄ (this notion of types generalises some widely used notions of types forXML do
uments su
h as DTD or XML-S
hema). In XDu
e a subtyping relationallows the programmer to use impli
itly an expression of type t where an expressionof type s is expe
ted, provided that t is a subtype of s. Despite the ri
hness of thetype algebra, the de�nition for this subtyping relation is extremely simple: sin
eJournal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.types denote sets of values, subtyping 
an simply be des
ribed as the set-theoreti
in
lusion of interpretations. As a matter of fa
t, XDu
e types 
an express exa
tlyregular tree languages. It is well known that this 
lass of languages is 
losed underall Boolean operators: the di�eren
e or the interse
tion of two XDu
e types 
an beexpressed by XDu
e types, even if there is no expli
it 
onstru
tors for interse
tionor negation (probably, in order to keep the syntax of types as simple as possible).As far as we know, XDu
e was the �rst type system with subtyping where typesare interpreted purely set-theoreti
ally and where sets denoted by types are 
losedunder all Boolean operators.XDu
e also has a powerful notion of pattern mat
hing [Hosoya and Pier
e 2001℄,where patterns are basi
ally types extended with 
apture variables. In parti
ular,a pattern mat
hing 
an perform arbitrary dispat
h on types at run-time, so thatXDu
e semanti
s is a
tually driven by types. Be
ause of the very ri
h type algebra(and in parti
ular of the fa
t that it is 
losed under Boolean operators), the stati
type-
he
king of pattern mat
hing results very pre
ise.Despite its very fun
tional style (mutually re
ursive fun
tions, stru
tural types,pattern mat
hing), XDu
e la
ks �rst-
lass fun
tions. Our initial goal was thus to�ll this gap while preserving XDu
e key ingredients: (i) a ri
h type algebra, whi
hsupports re
ursive types, subtyping and a 
omplete set of Boolean operators, andinterpret them in a purely set-theoreti
 way (in
luding negation); (ii) a type-drivensemanti
s (to whi
h we add overloaded fun
tions so that we 
an re�e
t dynami
type dispat
h on fun
tions' interfa
es). Other dire
tions for pra
ti
ally embeddingXDu
e type system into general purpose languages have been studied indepen-dently, e.g. Xtati
 [Gapayev and Pier
e 2003℄ or OCamlDu
e [Fris
h 2006℄. In thiswork, though, we did not want to embed XDu
e into some host type system, but tostudy the impli
ations of keeping its salient features, in parti
ular a 
omplete set ofBoolean 
ombinators, while designing a whole language with �rst-
lass fun
tions.The same goal was pursued by Jér�me Vouillon in a re
ent work [Vouillon 2006℄ byfollowing an approa
h opposite to ours. Vouillon gives up interse
tion and negationtypes and starts from a parti
ular model of fun
tions in order to avoid a 
ir
ular-ity. In parti
ular, this is obtained by de�ning a subtyping relation via a dedu
tionsystem that is then used to type the expressions of the language. This indu
es amodel of values that, thanks to the absen
e of interse
tions (besides negations), issound and 
omplete with respe
ts to the synta
ti
ally de�ned subtyping relation.The advantage of giving up interse
tions and negations is that besides arrow types,the system also a

ounts for parametri
 expli
it polymorphism.We already dis
ussed in the introdu
tion why our work �lls the gap between existingwork on interse
tion types and that on lately bound overloaded fun
tions. Morepre
isely, on the one hand we have the work on overloading where fun
tions 
an beformed of di�erent pie
es of 
ode stu
k together, ea
h pie
e of 
ode 
orresponding toa di�erent input type; however the types of these overloaded fun
tions do not havea set-theoreti
 
hara
terisation as interse
tion types instead have [Castagna et al.1995℄. On the other hand, there is the line of resear
h on interse
tion (and union)types [Barendregt et al. 1983; Coppo and Dezani-Cian
aglini 1980; Barbanera et al.1995; Reynolds 1991; 1996℄, where types have a set-theoreti
 behaviour but wheredi�erent 
omponents of an interse
tion of arrows 
annot 
orrespond to di�erentJournal of the ACM, Vol. V, No. N, Month 20YY.
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es of 
ode: interse
tions stem from di�erent repeated typings of a same 
ode,when
e a ��avour� of parametri
ity (where the �parameter� is the hypothesis used inea
h typing of a fun
tion body). We 
an now better pinpoint where su
h a ��avour�
omes from. It resides in the equivalen
e we dis
ussed at the end of Se
tion 2.6,that is
(t1→→→s1)∧∧∧(t2→→→s2) ≃ (t1∨∨∨t2)→→→(s1∧∧∧s2) . (7)This, in some sense, states that it is not possible to have a fun
tion with twodi�erent behaviours that are 
hosen a

ording to the type of the argument (seeAppendix A.3 for a semanti
 interpretation of this fa
t). The equation above holdsin the theory of union and interse
tion types of [Barbanera et al. 1995℄,7 and al-though it 
annot be proved in the theory of Forsythe, it is not possible, in general,to write a term in Forsythe that separates the two types of equation (7).8 Animportant pie
e of work related to this aspe
t of the resear
h is the work on re-�nement types. When re�nement types are used for logi
al frameworks [Pfenning1993℄, then they have with respe
t to equation (7) the same behaviour as the workson union and interse
tion types we 
ited above. Yet, when re�nement types are
oupled with datatype de�nitions and applied to ML, then they work better inthis respe
t, sin
e it is then possible to write fun
tions with interse
tion types inwhi
h a parti
ular pie
e of 
ode is exe
uted only for a given input type [Freemanand Pfenning 1991℄. It is thus possible to write a term that separates two typesof the same form as in equation (7). However, this works only for the de
lared re-�nements of a datatype and, therefore, it does not a

ount for all possible subsetsof a generi
 type. Therefore the stri
t 
ontainment of the types in (7) 
annot beproved in general. Rather than a drawba
k, this is a dire
t 
onsequen
e of usingre�nement types with Curry-style λ-abstra
tions: using Chur
h-style abstra
tions,as we do, may require 
ode-dupli
ation, in parti
ular in 
ase of overloaded fun
-tions that return fun
tions with varying types but with the same behaviour. Whilethis dupli
ation 
an be avoided by un
urrifying the overloaded fun
tion, it wouldmake it impra
ti
al to use interse
tions in the way they are used in the 
ontext ofre�nement types.A mainstream way to deal with a 
omplex type algebra with Boolean operators isto rely on a denotational semanti
s for the 
al
ulus and to interpret types as idealsin this model. There exist a ri
h literature that follows this approa
h, for instan
eAiken and Wimmers [Aiken and Wimmers 93; Aiken et al. 1994℄, Damm [Damm1994b; Vouillon and Melliès 2004℄, Melliès and Vouillon [Vouillon and Melliès 2004;Melliès and Vouillon 2005℄. Even Amadio and Cardelli's seminal paper on subtypingre
ursive types [Amadio and Cardelli 1993℄ proposes a �denotational� interpretationof types (as 
omplete uniform partial-equivalen
e relations). The main di�eren
ebetween our work and this line of resear
h is that we 
annot rely on a denota-tional semanti
s either for the 
al
ulus (be
ause of the type-driven semanti
s9) or

7Idem, axioms (11) and (12) of De�nition 3.3.
8Besides, in Forsythe there is the 
onstraint of �
oheren
e� so that, as a 
on
rete example, it isnot possible to de�ne an overloaded fun
tion of type (int→int)∧(real→real) that when applied toan integer returns zero and when applied on a non-integer real returns one.
9The de�nition of a denotational semanti
s for a language with overloaded fun
tions and dynami
Journal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.for the types (be
ause we want to interpret negation as set-theoreti
 
omplementand all the denotational interpretations of types we are aware of are not 
losedunder 
omplement). The te
hniques devised in our formal development are thusquite di�erent from those used before and some aspe
ts of our 
al
ulus might seemstrange when looked from the point of view of denotational semanti
s. An exam-ple of �strangeness� is our treatment of negative arrow types in the typing rule forabstra
tions.One way to position our paper within the existing literature is to 
onsider thatwe show how to introdu
e and study a semanti
 notion of subtyping, not only whenno denotational semanti
s for the 
al
ulus 
an a

ount for type negation, but evenwhen a denotational semanti
s for the 
al
ulus is out of rea
h. Our use of the ad-je
tive �semanti
� refers spe
i�
ally to the de�nition of subtyping (by opposition toa synta
ti
/axiomati
 de�nition), and not to the semanti
s of the 
al
ulus. Stri
tlyspeaking we do not even give a semanti
s of types: the interpretation of types isfun
tional to the semanti
s of the subtyping relation, but it is not intended to de-s
ribe what types are. This is 
lear when 
onsidering our universal model: arrowtypes are interpreted as sets of �nite relations, but it is patent that the types of thelanguage we presented are not sets of �nite graph fun
tions. The only semanti
s wede�ne is the semanti
s of subtyping. This is perfun
tory 
hara
terised by the inter-pretation of Boolean 
onstru
tors and of the empty types. More pre
isely, sin
e werequire that union, interse
tion, and negation type 
onstru
tors are interpreted asthe 
orresponding set-theoreti
 operators (or, equivalently, that they obey the samelaws as the 
orresponding set-theoreti
 operators), then the semanti
s of subtypingis univoquely identi�ed by the set of empty types. So the 
ore of this work sumsup to identifying the set of types that are equivalent to the empty type. This is
learly less demanding than de�ning the entire semanti
s of types or, a fortiori, thesemanti
s of a 
omplete language.In addition to the fundamental di�eren
e that we dis
ussed above, it is interestingto 
ompare in more details our work with Damm's [Damm 1994b℄. Damm's systemin
ludes interse
tion and union types, and is also based on ideas from the theory ofregular tree languages. Spe
i�
ally, it en
odes a fun
tion type as a set of sequen
esthat represent all the possible graphs for �nite approximations of fun
tions in thistype; this indire
t interpretation does not give a dire
t and e�e
tive subtyping rulefor Boolean 
ombinations of arrow types. We 
ould not extra
t from [Damm 1994b℄a 
on
rete 
hara
terisation of the subtyping relation. Instead, our dire
t treatmentgives a new and non-trivial subtyping rule for arrow types, whi
h turned out to beuseful in other 
ontexts. In parti
ular, a 
onne
tion has been established betweenthis rule and the minimal relevant logi
 B+ [Dezani-Cian
aglini et al. 2002℄.The foundational work by Melliès and Vouillon [Vouillon andMelliès 2004; Mellièsand Vouillon 2005℄ generalises the model of ideals for re
ursive and polymorphi
types proposed by Ma
Queen, Plotkin, and Sethi [Ma
Queen et al. 1986℄. Theirapproa
h shares with our work the prima
y of the types over the expressions, insofardispat
h�as the one studied here� is still an open problem: the attempts at 
reatingsu
h ade�nition we are aware of either put strong restri
tions on dynami
 dispat
h [Castagna et al.1993; Tsuiki 1994℄ or they impose a strati�ed 
onstru
tion of higher order types [Studer 2001℄ (ate
hnique introdu
ed for λ& to enfor
e strong normalisation [Castagna et al. 1995℄).Journal of the ACM, Vol. V, No. N, Month 20YY.
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tional to the justi�
ation of the former (in [Vouillonand Melliès 2004; Melliès and Vouillon 2005℄ types are sets of intentionally de�nedexpressions, in the sense that they are de�ned in terms of some properties theymust satisfy). Contrary to our work, Melliès and Vouillon are not interested inpreserving a stri
tly set-theoreti
 interpretation of Boolean operators (e.g. theirunion type is an over-approximation of the set-theoreti
 union), they do not 
areabout the 
ompleteness of this set of operators (negation is not a

ounted for,although it should be possible to add it10), and they do not insist of the e�e
tivenessof the subtyping relation. A
tually, in [Vouillon and Melliès 2004; Melliès andVouillon 2005℄ the subtyping relation plays the role of a 
onsisten
y 
he
k fortheir denotational semanti
s (only soundness of the subtyping rules is stated). Ourresear
h aims at a far more modest and pra
ti
al target: we are not trying to givea denotational a

ount for subtyping and Boolean operators, but only to de�ne asubtyping relation. As su
h we are mu
h more in the realm of the syntax than theone of the semanti
s.9. CONCLUSIONOur original motivation for developing the theory presented in this arti
le was theaddition of �rst-
lass fun
tions to XDu
e while preserving the set-theoreti
 ap-proa
h to subtyping. This was the starting point of the CDu
e proje
t [CDUCE ℄,aiming at developing a programming framework 
overing several aspe
ts of XMLprogramming: e�
ient implementation, query languages, web-servi
es, web pro-gramming, and so on.The reader might be surprised to fa
e su
h a 
omplex theory in the setting ofan XML-oriented fun
tional language. First, we should mention that XML playsno role in the 
omplexity of the theory. The 
ir
ularity whi
h our bootstrappingte
hnique addresses 
omes only from the 
ombination of arrow types, re
ursive typesand Boolean 
onne
tives. Sin
e XDu
e already had re
ursive types and Boolean
onne
tives, it seemed natural to add arrow types and to fully integrate them withthese features. Simpler solutions 
ould have been possible, e.g. by stratifying thetype algebra so as to avoid any intera
tion between arrow types and existing XDu
etypes: this is what the �rst author did to integrate XDu
e types into an ML-basedtype system [Fris
h 2006℄.Se
ond, we 
ould have presented the theory without introdu
ing the abstra
t
on
ept of models. Indeed, for the appli
ation to a spe
i�
 programming language,we 
ould have worked dire
tly with the universal model (Se
tion 6.8). That said, webelieve that the 
urrent presentation better 
aptures the essen
e of our approa
h.Working dire
tly with a spe
i�
 model might have seemed mysterious and ad ho
.Although we presented our notion of model and the bootstrapping te
hnique ona spe
i�
 type algebra and for a spe
i�
 
al
ulus, our framework is quite robust.The Appendix shows how to extend our system with referen
e types or to modify it
10One of the JACM reviewers suggested that negation 
ould be interpreted as the 
omplement ofredu
ibility 
andidates for weak normalisation and 
onje
tures that su
h an interpretation wouldbe 
ompatible with Melliès and Vouillon's approa
h �hen
e, with re
ursive types� as long asone adds a strati�
ation on terms to the language as in the language interpreted by Ma
Queen,Plotkin and Sethi in the ideal model. Journal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.to deal with non-overloaded fun
tions. Fris
h's Ph.D. thesis [Fris
h 2004℄ des
ribesanother variant of the system where appli
ation is always well-typed (the opera-tional semanti
s 
an return any value if the fun
tion is not prepared to deal withthe argument and the type system does not give any stati
 information about thetype of the result). All these modi�
ations are quite lo
al and do not 
hange thestru
ture of the formal development nor the main properties of the system.More importantly, our approa
h and the te
hniques we developed turned out tohave mu
h a broader appli
ation than we initially expe
ted. What we devised isthe �rst approa
h for a higher order λ-
al
ulus in whi
h union, interse
tion, andnegation types have a set-theoreti
 interpretation. The logi
al relevan
e of theapproa
h was independently 
on�rmed by Dezani et al. [Dezani-Cian
aglini et al.2002℄ who showed that the subtyping relation indu
ed by the universal model ofSe
tion 6.8 restri
ted to its positive part (that is arrows, unions, interse
tions but nonegations) 
oin
ides with the relevant entailment of the B+ logi
 (de�ned 30 yearsbefore we started our work). This same approa
h 
an be applied to paradigms otherthan λ-
al
uli: Castagna, De Ni
ola and Vara

a [Castagna et al. 2005; Castagnaet al. 2007℄ use our te
hnique to de�ne the Cπ-
al
ulus, a π-
al
ulus where Boolean
ombinators are added to the type 
onstru
tors ch
+(t) and ch

−(t) whi
h 
lassifyall the 
hannels on whi
h it is possible to read or, respe
tively, to write a valueof type t. The te
hnique using the extensional interpretation is still needed for
ardinality reasons, however bootstrapping in Cπ has a di�erent �avour, sin
e itgenerates a model that is mu
h 
loser to the model of values. Interestingly, thismodel is de�ned by a �x-point 
onstru
tion. Cπ features several points that are in
ommon with or dual to CDu
e: Cπ presents the same paradox one meets whenadding referen
e types to CDu
e [Castagna and Fris
h 2005℄. The paradox 
an beavoided by restri
ting Cπ to its �lo
al� version [Castagna et al. 2005℄ or by using lessexpressive models [Castagna et al. 2007℄ but in the former 
ase the type s
hemesof Se
tion 6.12 must be reintrodu
ed, in spite of the fa
t that they are not neededfor the full version of Cπ. Another striking resemblan
e between CDu
e and Cπthat is worth mentioning is that in order to de
ide the subtyping relation for Cπ,one ta
kles the same di�
ulties as those met in de
iding general subtyping for apolymorphi
 extension of CDu
e (a
tually of XDu
e [Hosoya et al. 2005℄), namely,one must be able to de
ide whether a type is a singleton or not. An informalintrodu
tion to these aspe
ts 
an be found in [Castagna 2005℄, while the formal
orresponden
e between CDu
e and Cπ is studied in [Castagna et al. 2006℄.Finally, let us 
on
lude with a more subje
tive remark. When we applied ourapproa
h to distin
t paradigms we often had the impression that our te
hniquepushed the various systems to their limits: by 
hoosing appropriate models we
ould mimi
 the existing type systems, but by tweaking them a little bit we 
ouldrea
h some �semanti
� limits, su
h as the in
ompatibility of re
ursion and somenaive implementations of referen
es and 
hannels or the need to des
end downat the atomi
ity of types to de
ide subtyping. This seems to suggest that ourte
hnique exhibits and gives us some insights about some intrinsi
 di�
ulties thatappear when Boolean operators are 
ombined with various type 
onstru
tors.Journal of the ACM, Vol. V, No. N, Month 20YY.
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iples of programminglanguages. ACM Press, 52�63.APPENDIXA. VARIANTS AND EXTENSIONSIn order to illustrate strengths and limits of our approa
h, we sket
h in this Ap-pendix some variants and extensions of our system.A.1 Adding other kinds of data 
onstru
torsOur system in
ludes pairs (and produ
t types). Other kinds of data 
onstru
torsare very easy to en
ode in or to add to the system. For instan
e, assuming twobasi
 singleton types {1} and {2}, a disjoint sum type 
onstru
tor t1+++t2 
an been
oded as ({1}×××t1)∨∨∨({2}×××t2); the inje
tions inl(e) and inr(e) be
ome (1, e) and
(2, e); and the 
ase disjun
tion case e of inl(x1) → e1 | inr(x2) → e2 be
omes:

(x = e ∈ {1}×××1 ? e1[x1 := π1(x)] | e2[x2 := π1(x)])If we want to extend our system with built-in sum types instead of en
odingthem, all 
hanges are straightforward. For example, the de�nition of the extensionalinterpretation would be: E(t1+++t2) = Jt1K + Jt2K ⊆ D + D(where + on the right-hand side denotes the set-theoreti
 disjoint sum).More 
omplex data 
onstru
tors 
an be similarly added. For instan
e, Fris
h'sthesis [Fris
h 2004℄ details the 
onstru
tion of extensible re
ords whi
h support 
on-
atenation and �eld removal. The subtyping rules that are derived from me
hani
alset-theoreti
 �arithmeti
� are rather 
omplex.Journal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.A.2 Referen
e 
ellsBesides being a fas
inating obje
t of type theoreti
al study, referen
e types are avery useful and used programming 
onstru
tion. Therefore, we might want to addreferen
e 
ells to our system. To this end, we would add a new kind of unary type
onstru
tor ref(t).Before extending our 
al
ulus, let us des
ribe a �paradox� that arises with ref-eren
e 
ells in presen
e of a set-theoreti
 interpretation of Boolean 
onne
tives.Intuitively, a value of type ref(t) should be a 
ell from whi
h we must be preparedto read any value of type t and to whi
h we are allowed to write any value of thistype. Clearly, with su
h an interpretation, the type ref(t)∧∧∧ref(s) should be emptyas soon as t and s are not equivalent; otherwise, any value in this interse
tion wouldgive a way to 
oer
e for free from one type to the other. Conversely, if t ≃ s, then
ref(t)∧∧∧ref(s) ≃ ref(s), and if s 6≃ 0, this type should not be empty (if s ≃ 0, then
ref(s) 
an be empty, it su�
es to disallow uninitialised referen
es). So, intuitivelyfor all types t,s with s 6≃ 0:

ref(t)∧∧∧ref(s) 6≃ 0 ⇐⇒ t ≃ s (8)Can we de�ne a notion of model to a

ount for this behaviour? The answer isno. To see why, 
onsider a non-empty basi
 type b, and build the re
ursive type
t = b∨∨∨(ref(t)∧ref(b)). Sin
e the basi
 type does not interse
t referen
e types, then
t is equivalent to b if and only if the right hand side of the union in its de�nition isempty, that is:

t ≃ b ⇐⇒ ref(t) ∧ ref(b) ≃ 0and be
ause of (8), we obtain:
t ≃ b ⇐⇒ t 6≃ bThis negative result does not mean that it is impossible to add referen
e typesto our system, only that we 
annot do it and validate equation (8). This equationwas obtained by the argument that whatever value we write in a referen
e, we mustbe prepared to read it ba
k from it. So let us imagine a notion of referen
e 
ellwhi
h 
omes with two sets: a set X1 of values that 
an be read from it, and a set

X2 of values that 
an be written to it. We 
an for instan
e design the operationalsemanti
s su
h that if we try to write a value v in it, it simply dis
ards it if v 6∈ X1(the type system will ensure that v ∈ X2). A referen
e marked (that is, expli
itlytyped) with the pair (X1, X2) should thus have type ref(t) when X1 ⊆ JtK ⊆ X2and X1 6= ∅. With these intuitions in mind, the formal de�nitions follow. We startwith the de�nition for the extensional interpretation:E(ref(t)) = ref(JtK) ⊆ D × P(D) × P(D)where the right-hand side is de�ned by:
ref(X) = {(d, X1, X2) | d ∈ X1 ⊆ X ⊆ X2}We also extend the 
al
ulus with the following 
onstru
tions:

e ::= . . . | !e | (e := e) | reft1,t2(e)Journal of the ACM, Vol. V, No. N, Month 20YY.
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v ::= . . . | reft1,t2(v)The �rst and se
ond produ
tions of expressions are for dereferen
ing and assign-ment. The 
orresponding typing rules are standard (we arbitrarily take 1 as theresult type for the assignment):

Γ ⊢ e : ref(t)

Γ ⊢!e : t

Γ ⊢ e1 : ref(t) Γ ⊢ e2 : t

Γ ⊢ (e1 := e2) : 1The third new 
onstru
tion 
reates a referen
e with the result of e as the initialvalue and t1, t2 as markers (
orresponding to X1 and X2 in the de�nition of ref(X)).Note that we 
onsider here reft1,t2(v) as a value (when it is well-typed). Of 
ourse,to de�ne the operational semanti
s, we would need a notion of store and lo
ationsto a

ount for the sharing of referen
e 
ells. Sin
e this is standard, we do notformalise su
h a semanti
s here. It su�
es to say that a referen
e 
reation mustredu
e to a fresh lo
ation; this redu
tion would extend the store to map the lo
ationto the initial value for the referen
e. Su
h a redu
tion should be disallowed under a
λ-abstra
tion with several arrow types (one 
an, for instan
e, use a weak redu
tionsemanti
s).The expression reft1,t2(e) should have type ref(t) if and only if t1 ≤ t ≤ t2;otherwise, following our experien
e with fun
tion types, it should have type¬¬¬ref(t).As a 
onsequen
e, in order to preserve the admissibility of the interse
tion rule, weuse the following typing rule:

Γ ⊢ e : t1 ∀i = 1..n. t1 ≤ si ≤ t2 ∀j = 1..m. ¬(t1 ≤ s′j ≤ t2)

Γ ⊢ reft1,t2(e) :
∧∧∧

i=1..n

ref(si) ∧
∧∧∧

j=1..m

¬¬¬ref(s′j)Although we do not formalise the operational semanti
s, the intuition is thatat any point during run-time, a referen
e 
ell of type ref(t) will have the form
reft1,t2(v) where v is a value of type t1 and t1 ≤ t ≤ t2. Reading the 
ontent ofsu
h a referen
e returns v. Writing a value v′ 
he
ks dynami
ally if v′ has type t1and if so, repla
es v with v′; otherwise, nothing happens. Our type system ensuresthat any value read from a referen
e of type ref(t) has type t and that any value
v assigned to a referen
e of type ref(t) has type t (but if the referen
e is of theform reft1,t2(v

′) with v not in t1 it might de
ide to reje
t this value silently). Of
ourse, we do not really want referen
es to reje
t values we assign to them. But itis 
lear that if the original program only 
ontains referen
e expressions of the form
reft,t(e), this will never happen. Allowing two di�erent types t1, t2 is just a way toobtain the analog of Theorem 5.5 and to avoid the �paradox� implied by equation(8) at the beginning of this se
tion.All the formal de�nitions and results about models and the type system are easilyadapted. Here, we only hint at the non-trivial points. We start with a set-theoreti
lemma to study the subtyping relation indu
ed by models:Journal of the ACM, Vol. V, No. N, Month 20YY.
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h et al.Lemma A.1. Let (Xi)i∈P and (Yj)j∈N two families of subsets of D. Then:
⋂

i∈P

ref(Xi) ⊆
⋃

j∈N

ref(Yj)

⇐⇒
(

⋂

i∈P

Xi = ∅

) or (∃j ∈ N.
⋂

i∈P

Xi ⊆ Yj ⊆
⋃

i∈P

Xi

)Proof: The ⇐ impli
ation is straightforward. For the opposite dire
tion, weassume that ⋂i∈P ref(Xi) ⊆
⋃

j∈N ref(Yj) and ⋂i∈P Xi 6= ∅. We de�ne Z1 as
⋂

i∈P Xi and Z2 as ⋂i∈P Yi. We pi
k an element d from Z1 whi
h is not emptyby hypothesis. The triple (d, Z1, Z2) is in ⋂i∈P ref(Xi), and thus, by hypothesis,also in ⋃j∈N ref(Yj). This gives a j su
h that (d, Z1, Z2) is in ref(Yj) and therest of the proof follows easily.Note in parti
ular that ref(t)∧∧∧ref(s) is empty if and only if t∧∧∧s is empty, soequation (8) does not hold. However, we also observe the invarian
e property
ref(t) ≤ ref(s) ⇐⇒ t ≃ s or t ≃ 0 whi
h is the least we 
an expe
t fromreferen
e types.We want the re
ursive type t = ref(t) to be empty. For 
ardinality reason, we
annot extend the notion of stru
tural interpretation by requiring D × P(D) ×
P(D) ⊆ D, Jref(t)K = ref(JtK). We use the same tri
k as for fun
tion types. Wede�ne:

reff (X) = {(d, X1, X2) | d ∈ X1 ⊆ X ⊆ X2} ⊆ D × Pf (D) × Pcf (D)where Pcf (D) denotes the set of 
o�nite subsets of D. We 
an easily 
he
k thatrepla
ing ref(_) by reff (_) in the Lemma above does not 
hange anything when
P and N are �nite. We now take the following de�nition for a stru
tural interpre-tation:�D2 ⊆ D and D × Pf (D) × Pcf (D) ⊆ D�for any types t1,t2: Jt1×××t2K = Jt1K × Jt2K�for any type t: Jref(t)K = reff (JtK)�The binary relation on D indu
ed by (d1, d2)⊲di and by (d, X1, X2)⊲d is Noethe-rian.The de�nition of the universal model is adapted a

ordingly: D0 is the initialsolution to the equation D0 = C +D0×D0+Pf (D0×D0

Ω)+(D×Pf (D)×Pcf (D)).Con
retely, we add a new produ
tion to this indu
tive de�nition of elements of D0:
d ::= . . . |(d, {d, . . . , d}, D0\{d, . . . , d})The de�nition of the predi
ate (d : t) is extended with:

((d, {d1, . . . , dn}, D
0\{d′1, . . . , d

′
m}) : ref(t)) = (d : t) ∧ ∀i.(di : t) ∧ ∀j.¬(d′j : t)Journal of the ACM, Vol. V, No. N, Month 20YY.
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 Subtyping · 65Related work. Davies and Pfenning [Davies and Pfenning 2000℄ show an issuearising from the 
ombination of referen
es 
ells and interse
tion types. The problemappears if we allow impli
itly-typed (Curry-style) 
ell 
reation, like ref(1). Thisreferen
e 
an be given many types, like ref(1), ref(int), ref(int∨∨∨bool), ref(1). Ifwe allow to give it an interse
tion of su
h types, say ref(int)∧∧∧ref(1), it is possibleto assign to it an arbitrary value (if, by subsumption, we see it with type ref(1)),but, when we read from it, we expe
t to read a value of type int (if we see itwith type ref(int)). In [Davies and Pfenning 2000℄, the solution is to restri
t theintrodu
tion of interse
tion types to values and to remove the distributivity rule
(t→→→s1)∧∧∧(t→→→s2) ≤ (t→→→s1∧∧∧s2). We do not follow su
h an approa
h be
ause it has aglobal impa
t on the whole system: 
hanging axiomati
ally the subtyping betweenfun
tion types is not possible in our system. We prefer the simpler approa
h that
onsists in having pres
riptive types for referen
e 
ells. When we 
reate a referen
e
ell, we give enough information to infer a single unique type for the 
ell 
ontents.A.3 Non-overloaded fun
tionsThe 
al
ulus introdu
ed in this paper let spe
ify several arrow types in λ-abstra
tion.In this se
tion, we show how to restri
t the 
al
ulus and the type system to allowonly one arrow type. The syntax of λ-abstra
tions is restri
ted to

µf(t→→→t).λx.eTo type this expression we 
an use the same type system as for our original 
al
ulus.It is easy to 
he
k that the operational semanti
s will never introdu
e overloadedfun
tions if the original expression does not 
ontain any. From that we dedu
e thatthe 
al
ulus remains sound. However, the interpretation of types as sets of values
hanges and be
ause of that, Theorem 5.5 no longer holds. To see why, take fourtypes t1, s1, t2, s2 and 
onsider the type (t1→→→s1)∧∧∧(t2→→→s2). Values of this type are
losed well-typed expressions of the form µf(t→→→s).λx.e su
h that t→→→s ≤ ti→→→si for
i = 1..2. But t→→→s ≤ ti→→→si 
an be de
omposed into (t ≃ 0) ∨ (ti ≤ t ∧ s ≤ si).The 
ondition is thus equivalent to (t ≃ 0) ∨ (t1∨∨∨t2 ≤ t ∧ s ≤ s1∧∧∧s2), whi
h isagain equivalent to t→→→s ≤ (t1∨∨∨t2)→→→(s1∧∧∧s2). We have proved that in the restri
ted
al
ulus, we have the following property:

J(t1→→→s1)∧∧∧(t2→→→s2)KV
= J(t1∨∨∨t2)→→→(s1∧∧∧s2)KVbut it is easy to 
he
k that

(t1→→→s1)∧∧∧(t2→→→s2) ≤ (t1∨∨∨t2)→→→(s1∧∧∧s2)does not hold in general. This is enough to 
on
lude that Theorem 5.5 does nothold.To re
over Theorem 5.5 and all the other formal results, we need to adapt justone de�nition. In the new restri
ted 
al
ulus, the type t→→→s should des
ribe allthe well-typed and 
losed expressions of the form µf(t′→→→s′).λx.e, provided that
t′→→→s′ ≤ t→→→s. This 
ondition 
an be de
omposed into t ≤ t′ ∧ s′ ≤ s. 11 Following
11We 
ould use a more 
omplex de
ompositionof t′→→→s′ ≤ t→→→s as (t ≤ t′ ∧ s′ ≤ s) ∨ t ≃ 0. Thiswould make the development slightly 
omplex without any real bene�t.Journal of the ACM, Vol. V, No. N, Month 20YY.



66 · Alain Fris
h et al.this intuition, we adapt De�nition 4.2; if X and Y are subsets of D, we de�ne
X → Y as:

X → Y = {(X ′, Y ′) ∈ P(D) × P(D) | X ⊆ X ′ ∧ Y ′ ⊆ Y }and keep De�nition 4.3 un
hanged (with the new de�nition for X → Y and ED =
C +D2+P(D)×P(D)). This modi�
ation is enough to establish all the theoremsfrom Se
tion 5 for the restri
ted 
al
ulus. Let us just outline some key modi�
ationswe need to do to a

ount for the new systemLemma A.2. Let (Xi)i∈P , (Xi)i∈N , (Yi)i∈P , (Yi)i∈N be four families of subsetsof D. Then:

⋂

i∈P

Xi → Yi ⊆
⋃

i∈N

Xi → Yi

⇐⇒

∃i0 ∈ N.Xi0 ⊆
⋃

i∈P

Xi ∧
⋂

i∈P

Yi ⊆ Yi0Proof: Let us prove the ⇒ dire
tion. We take X =
⋃

i∈P Xi and Y =
⋂

i∈P Yi.The element (X, Y ) is in ⋂i∈P Xi → Yi and so it is also in ⋃i∈N Xi → Yi. We
an thus �nd i0 ∈ N su
h that (X, Y ) ∈ Xi → Yi, that is: Xi0 ⊆ X ∧ Y ⊆ Yi0 .The other dire
tion is straightforward.From this we learn how to adapt Lemma 6.8:Lemma A.3. Let P and N be two �nite subsets of Afun. Then:
⋂

a∈P

E(a) ⊆
⋃

a∈N

E(a)

⇐⇒

∃(t0→→→s0) ∈ N.

t
t0\\\

(

∨∨∨

t→→→s∈P

t

)|
= ∅ ∧

t(
∧∧∧

t→→→s∈P

s

)

\\\s0

|
= ∅(with the 
onvention ⋂a∈∅ E(a) = EfunD = P(D) × P(D)).De�nition 6.9 is adapted by taking:

CP,Nfun ::= ∃t0→→→s0 ∈ N.























N

(

t0∧∧∧
∧∧∧

t→→→s∈P

¬¬¬t

)

∈ S

N

(

(¬¬¬s0)∧∧∧
∧∧∧

t→→→s∈P

s

)

∈ Sand the following results follow: Theorem 6.10, Corollary 6.11, Corollary 6.12,Lemma 6.13, all the results from Se
tion 6.3 and Se
tion 6.4, where Lemma 6.21 ismodi�ed as follows:
Jt→→→sK

V
= {(µf(t′→→→s′).λx.e) ∈ V . | t′→→→s′ ≤ t→→→s}Journal of the ACM, Vol. V, No. N, Month 20YY.



Semanti
 Subtyping · 67The 
ase for fun
tions in the proof of Lemma 6.27 needs to be adapted as well.The value v whi
h is produ
ed in this 
ase is now v = µf(t0→→→s0).λx.fx where
t0 =

∨∨∨

i=1..n ti and s0 =
∧∧∧

i=1..n si.Adapting the 
ase for β-redu
tion in the proof of the Subje
t Redu
tion theoremis easy.The last thing to 
hange is the 
onstru
tion of the universal model (Se
tion 6.7and Se
tion 6.8). We re-de�ne EfD as C +D2+Pcf(D)×Pf (D) where Pcf denotesthe restri
tion of the powerset to 
o�nite subsets. The terms of the universal modelare now generated by the following grammar:
d ::= c | (d, d) | ({d, . . . , d}, {d, . . . , d})The predi
ate (d : t) used to de�ne the set-theoreti
 interpretation J_K0 is 
hangedwith:

(({d1, . . . , dn}, {d
′
1, . . . , d

′
m}) : t1→→→t2) = ∀i. ¬(di : t1) ∧ ∀j. (d′j : t2)Re
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