
Duce
Alain Frisch

Joint work with: Véronique Benzaken, Giuseppe Castagna

http://www.cduce.org/

CDuce – p.1/26

http://www.cduce.org/

Programming with XML

Level 0: textual representation of XML documents
AWK, sed, Perl

Level 1: abstract view provided by a parser
SAX, DOM, . . .

Level 2: untyped XML-specific languages
XSLT, XPath

Level 3: XML types taken seriously (aka: related work)
XDuce, Xtatic
XQuery
. . .

CDuce – p.2/26

Presentation

�

Duce:

XML-oriented

type-centric

general-purpose features

efficient (faster than XSLT at least !)

Intended uses:

Small “adapters” between different XML applications

Larger applications

Web applications, web services

CDuce – p.3/26

Status of the implementation

Public release available for download
(+ online web prototype to play with).

JIT compilation of pattern matching.

Quite efficient, but many more optimizations are possible
(and considered).

Integration with standards:
Unicode, XML, Namespaces: fully supported.
DTD: external dtd2cduce tool.
XML Schema: being implemented at a deeper level.

CDuce – p.4/26

Summary of the talk

Introduction

XML in

�

Duce: document and types

Types

Pattern matching

Functions

Type errors

Ongoing work. Around

�

Duce

CDuce – p.5/26

XML-oriented + data-centric

XML literals : in the syntax.

XML fragments : first-class citizens, not embedded in objects.

<program>[
<date day="monday">[

<invited>[<title>[’Conservation of information’]
<author>[’Thomas Knight, Jr.’]]

<talk>[<title>[’Scripting the type-inference process’]
<author>[’Bastiaan Heeren’]
<author>[’Jurriaan Hage’]
<author>[’Doaitse Swierstra’]]]]

CDuce – p.6/26

Types

Types are pervasive in

�

Duce:

Static validation
E.g.: does the transformation produce valid XHTML ?

Type-driven semantics
Dynamic dispatch
Overloaded functions

Type-driven compilation
Optimizations made possible by static types
Avoids unnecessary and redundant tests at runtime
Allows a more declarative style

CDuce – p.7/26

Typed XML

� �� �

� � �

<program>[
<date day="monday">[

<invited>[<title>[’Conservation of information’]
<author>[’Thomas Knight, Jr.’]]

<talk>[<title>[’Scripting the type-inference process’]
<author>[’Bastiaan Heeren’]
<author>[’Jurriaan Hage’]
<author>[’Doaitse Swierstra’]]]]

� � �

<program>[
<date day="monday">[

<invited>[<title>[’Conservation of information’]
<author>[’Thomas Knight, Jr.’]]

<talk>[<title>[’Scripting the type-inference process’]
<author>[’Bastiaan Heeren’]
<author>[’Jurriaan Hage’]
<author>[’Doaitse Swierstra’]]]]

CDuce – p.8/26

Typed XML

� �� �

� � �

<program>[
<date day="monday">[

<invited>[<title>[’Conservation of information’]
<author>[’Thomas Knight, Jr.’]]

<talk>[<title>[’Scripting the type-inference process’]
<author>[’Bastiaan Heeren’]
<author>[’Jurriaan Hage’]
<author>[’Doaitse Swierstra’]]]]

� � �

<program>[
<date day=String>[

<invited>[<title>[PCDATA]
<author>[PCDATA]]

<talk>[<title>[PCDATA]
<author>[PCDATA]
<author>[PCDATA]
<author>[PCDATA]]]]

CDuce – p.9/26

Typed XML

� �� �

� � �

<program>[
<date day="monday">[

<invited>[<title>[’Conservation of information’]
<author>[’Thomas Knight, Jr.’]]

<talk>[<title>[’Scripting the type-inference process’]
<author>[’Bastiaan Heeren’]
<author>[’Jurriaan Hage’]
<author>[’Doaitse Swierstra’]]]]

� � �

<program>[
<date day=String>[

<invited>[Title Author]
<talk>[Title Author Author Author]]]

type Author = <author>[PCDATA]
type Title = <title>[PCDATA]

CDuce – p.10/26

Typed XML

� �� �

� � �

<program>[
<date day="monday">[

<invited>[<title>[’Conservation of information’]
<author>[’Thomas Knight, Jr.’]]

<talk>[<title>[’Scripting the type-inference process’]
<author>[’Bastiaan Heeren’]
<author>[’Jurriaan Hage’]
<author>[’Doaitse Swierstra’]]]]

� � �

<program>[
<date day=String>[

<invited>[Title Author+]
<talk>[Title Author+]]]

type Author = <author>[PCDATA]
type Title = <title>[PCDATA]

CDuce – p.11/26

Typed XML

� �� �

� � �

<program>[
<date day="monday">[

<invited>[<title>[’Conservation of information’]
<author>[’Thomas Knight, Jr.’]]

<talk>[<title>[’Scripting the type-inference process’]
<author>[’Bastiaan Heeren’]
<author>[’Jurriaan Hage’]
<author>[’Doaitse Swierstra’]]]]

� � �

Program

type Program = <program>[Day*]
type Day = <date day=String>[Invited? Talk+]
type Invited = <invited>[Title Author+]
type Talk = <talk>[Title Author+]
type Author = <author>[PCDATA]
type Title = <title>[PCDATA]

CDuce – p.12/26

Types

Types describe values.

A natural notion of subtyping:

� � � �� � � ��� � � �
where � � �	�
 � � � �� � �

Problem: circular definition between subtyping and typing!

Bootstrap method to remain set-theoretic.

Problem: implementation of the complex subtyping relation.
hand-made lightweight solver

(
 remove backtracking from XDuce algorithm)
caching, set-theoretic heurtistics

CDuce – p.13/26

Pattern Matching: ML-like flavor

ML-like flavor:

match e with <date day=d>_ -> d

type E = <add>[Int Int] | <sub>[Int Int]
fun eval (E -> Int)
| <add>[x y] -> x + y
| <sub>[x y] -> x - y

Patterns are “types with capture variables”

The type system:
Ensures exhaustivity.
Infers precise types for capture variables.

CDuce – p.14/26

Pattern Matching: beyond ML

Type-based dispatch:
match e with
| x & Int -> ...
| x & Char -> ...

let doc =
match (load_xml "doc.xml") with

| x & DocType -> x
| _ -> raise "Invalid input !";;

CDuce – p.15/26

Pattern Matching: beyond ML

Regular expression and capture:
fun (Invited|Talk -> [Author+]) <_>[Title x::Author*] -> x

fun ([(Invited|Talk|Event)*] -> ([Invited*], [Talk*]))
[(i::Invited | t::Talk | _)*] -> (i,t)

fun parse_email (String -> (String,String))
| [local::_* ’@’ domain::_*] -> (local,domain)
| _ -> raise "Invalid email address"

CDuce – p.16/26

Compilation of pattern matching

Problem: implementation of pattern matching

Result: A new kind of push-down tree automata.
 Non-backtracking implementation
 Uses static type information
 Allows a more declarative style.

type A = <a>[Int*]
type B = [Char*]

fun ([A+|B+] -> Int) [A+] -> 0 | [B+] -> 1

�

fun ([A+|B+] -> Int) [<a>_ _*] -> 0 | _ -> 1

TODO: formalize and prove optimality properties.

CDuce – p.17/26

Functions

Overloaded, first-class, subtyping, name sharing, code
sharing...

type Program = <program>[Day*]
type Day = <date day=String>[Invited? Talk+]
type Invited = <invited>[Title Author+]
type Talk = <talk>[Title Author+]

let patch_program
(p :[Program], f :(Invited -> Invited) & (Talk -> Talk)):[Program] =
xtransform p with (Invited | Talk) & x -> [(f x)]

let first_author ([Program] -> [Program];
Invited -> Invited;
Talk -> Talk)

| [Program] & p -> patch_program (p,first_author)
| <invited>[t a _*] -> <invited>[t a]
| <talk>[t a _*] -> <talk>[t a]

(* we can replace the last two branches with:
<(k)>[t a _*] -> <(k)>[t a]

*)

CDuce – p.18/26

Precise type errors

type Title = <title>String
type Author = <author>String
type Talk = <talk>[Title Author+]

let x : Talk = <talk>[<author>[’Alain Frisch’] <title>[’CDuce’]]

�

let x : Talk = <talk>[<author>[’Alain Frisch’] <title>[’CDuce’]]let x : Talk = <talk>[<author>[’Alain Frisch’] <title>[’CDuce’]]let x : Talk = <talk>[<author>[’Alain Frisch’] <title>[’CDuce’]]
This expression should have type:
‘title
but its inferred type is:
‘author
which is not a subtype, as shown by the sample:
‘author

CDuce – p.19/26

Precise type errors

type Title = <title>String
type Author = <author>String
type Talk = <talk>[Title Author+]

fun mk_talk(s : String) : Talk = <talk>[<title>s]

�

fun mk_talk(s : String) : Talk = <talk>[<title>s]fun mk_talk(s : String) : Talk = <talk>[<title>s]fun mk_talk(s : String) : Talk = <talk>[<title>s]
This expression should have type:
[Author+]
but its inferred type is:
[]
which is not a subtype, as shown by the sample:
[]

CDuce – p.20/26

Precise type errors

type Title = <title>String
type Author = <author>String
type Talk = <talk>[Title Author+]
type Invited = <invited>[Title Author+]
type Day = <date>[Invited? Talk+]

fun (Day -> [Talk+]) <date>[_ x::_*] -> x

�

fun (Day -> [Talk+]) <date>[_ x::_*] -> xfun (Day -> [Talk+]) <date>[_ x::_*] -> xfun (Day -> [Talk+]) <date>[_ x::_*] -> x
This expression should have type:
[Talk+]
but its inferred type is:
[Talk*]
which is not a subtype, as shown by the sample:
[]

CDuce – p.21/26

Precise type errors

type Program = <program>[Day*]
type Day = <date day=String>[Invited? Talk+]
type Invited = <invited>[Title Author+]
type Talk = <talk>[Title Author+]
type Author = <author>[PCDATA]
type Title = <title>[PCDATA]

fun (p :[Program]):[Program] = xtransform p with Invited -> []
fun (p :[Program]):[Program] = xtransform p with <invited>c -> [<talk>c]

fun (p :[Program]):[Program] = xtransform p with Talk -> []

�

fun (p :[Program]):[Program] = xtransform p with Talk -> []fun (p :[Program]):[Program] = xtransform p with Talk -> []fun (p :[Program]):[Program] = xtransform p with Talk -> []
This expression should have type:
[Program]
but its inferred type is:
[<program>[<date day = String>[Invited?]*]]
which is not a subtype, as shown by the sample:
[<program>[<date day = "">[]]]

CDuce – p.22/26

Other features

General-purpose: records, tuples, integers, exceptions,
references, . . .

String + regular expressions (types/patterns)

Boolean connectives (types/patterns)

Other iterators

CDuce – p.23/26

Ongoing work on language design

Currently investigated:

XSLT/XPath/XQuery-like primitives

Support for XML Schema.

Interface with external languages.

Module system, incremental programming.

Parametric polymorphism.

CDuce – p.24/26

Around Duce

Dynamic web applications (S. Zacchiroli)

Query language (C. Miachon)

Security & information flow analysis (M. Burelle)

CDuce – p.25/26

Thank you !

http://www.cduce.org/

CDuce – p.26/26

http://www.cduce.org/

	Programming with XML
	Presentation
	Status of the implementation
	Summary of the talk
	XML-oriented + data-centric
	Types
	Typed XML
	Typed XML
	Typed XML
	Typed XML
	Typed XML
	Types
	Pattern Matching: ML-like flavor
	Pattern Matching: beyond ML
	Pattern Matching: beyond ML
	Compilation of pattern matching
	Functions
	Precise type errors
	Precise type errors
	Precise type errors
	Precise type errors
	Other features
	Ongoing work on language design
	Around duce {}
	

