
Recognizing regular tree languages with
static information

Alain Frisch (ENS Paris)

PLAN-X 2004 p.1/22

Motivation

� Efficient compilation of patterns in XDuce/CDuce/. . .

� E.g.:

type A = <a>[A*]

type B = [B*]

let f ((A|B) -> Int) A -> 0 | B -> 1

let g ((A|B) -> Int) <a>_ -> 0 | _ -> 1

� Encourage more declarative style in patterns.

PLAN-X 2004 p.2/22

The separation problem

� �

: domain of values

Given

������ � � �

��� 	 �

(pairwise disjoint) and
 � ��� ,
returns

s.t.
 � � �

� Two-stage process: the

� � come first (compile-time), and

comes after (run-time)

Given

������ � � �

��� , computes a function �� � � � ��
�� � � � � �

s.t.

�
 � ����
 � ��� ��� �

� We want � to be efficient, even if computing it is expensive.

� Parameters: the domain
�

, the class of possible

� � .

� Note:

��� is the static information provided by the type
system.

PLAN-X 2004 p.3/22

Examples

� �

: integers;

� � : unions of intervals.

� Decision tree (dichotomy)

� �

: strings;

� � : finite sets.

� Trie.

� Can ignore suffixes.

� E.g.:

� � � ��� � � � �
� � � ��

��� � � �� �
� �
�

� � �

� �

: strings;

� � : regular languages.

� Deterministic automaton.

� �

: XML documents;
� � : XML types (schema) = regular tree

languages.

� ???

PLAN-X 2004 p.4/22

Expected properties

� Traverse each node of the tree only a finite bounded number
of times.

� Ignore subtrees that can be ignored

� because of the static information and/or

� because they are irrelevant.

� Independance w.r.t. the syntax of types (only the denoted
sets matter).

PLAN-X 2004 p.5/22

Classical solutions

� Backtracking tree automata

� Don’t guarantee linear time recognition.

� Bottom-up deterministic tree automata.

� Only consider downward context (subtree).

� Ignore upward context (path).

� Cannot adapt their behavior to the current location in the
tree.

� Top-down deterministic tree automata

� Cannot recognize arbitrary regular tree languages.

� Only consider the upward context.

� No left-to-right propagation of information.

PLAN-X 2004 p.6/22

Contexts

� Path

� Subtree

� Left

PLAN-X 2004 p.7/22

Trees

Trees:

 � � � � � �
 ���
 � �

(ie:

� � � � � � �

)
Regular languages defined by equations:

�
�

��� � � � 	 �

� �

	� � � 	 �

� �

� � �
��� � � � 	 �

� �

	� � � 	 �

� �

E.g.:

�
�

��
� � �� � ��

��� � ��� � 	 ��� � ��

��� � � � � 	 ��� � ��

PLAN-X 2004 p.8/22

Non-uniform automata

� A specific kind of push-down automata.

� Combine the advantages of bottom-up and top-down TA.

� Can totally ignore whole subtrees.

� Fixed traversal order.

� Thread a control-state through the traversal.

� Accumulates knowledge gained from the traversal.

� Depends on the left context (not only path).

PLAN-X 2004 p.9/22

Non-uniform automata

 �
 �

Input: state

PLAN-X 2004 p.10/22

Non-uniform automata

 �
 �

�

Input: state �

PLAN-X 2004 p.10/22

Non-uniform automata

 �
 �

�

� �

Input: state �

�� � � �

PLAN-X 2004 p.10/22

Non-uniform automata

 �
 �

�

� �

� �

Input: state �

�� � � �

� � � � �
� � �

PLAN-X 2004 p.10/22

Non-uniform automata

 �
 �

�

� �

� � � �

Input: state �

�� � � �

� � � � �
� � �

�� � � � � � �

PLAN-X 2004 p.10/22

Non-uniform automata

 �
 �

�

� �

� � � �

� �

Input: state �

�� � � �

� � � � �
� � �

�� � � � � � �

� � � � �
� � �

PLAN-X 2004 p.10/22

Non-uniform automata

 �
 �

�

� �

� � � �

� �
�

Input: state �

�� � � �

� � � � �
� � �

�� � � � � � �

� � � � �
� � �

�� � � � � � � � � � � �
�
�

PLAN-X 2004 p.10/22

Compilation

� Main technical contribution: a compilation algorithm that
generates efficient NUA (which ignore many subtrees).

� Key idea: propagate static information precisely (in the
control state)

PLAN-X 2004 p.11/22

Compilation

� May ignore right subtree, according to left subtree.

PLAN-X 2004 p.12/22

Compilation

� Propagate static information.

PLAN-X 2004 p.13/22

Compilation

� Ignore right subtree.

PLAN-X 2004 p.14/22

Compilation

� Ignore left subtree (normalization).

PLAN-X 2004 p.15/22

Compilation

� Ignore right subtree.

PLAN-X 2004 p.16/22

Compilation

� Could also ignore left subtree.

PLAN-X 2004 p.17/22

Compilation

� Consider left subtree, but could ignore it.

PLAN-X 2004 p.18/22

Compilation

PLAN-X 2004 p.19/22

Compilation

PLAN-X 2004 p.20/22

Compilation of PM in CDuce

� Handle capture variables.

� All CDuce types (open/closed records, integer/characters
intervals, . . .).

� Effectively encourages declarative style without degrading
performances.

PLAN-X 2004 p.21/22

Thank you!

PLAN-X 2004 p.22/22

	Motivation
	The separation problem
	Examples
	Expected properties
	Classical solutions
	Contexts
	Trees
	Non-uniform automata
	Non-uniform automata
	Compilation
	Compilation
	Compilation
	Compilation
	Compilation
	Compilation
	Compilation
	Compilation
	Compilation
	Compilation
	Compilation of PM in CDuce
	Thank you!

