
Greedy regular expression matching
Alain Frisch (ENS Paris)

Luca Cardelli (MSR Cambridge)

PLAN-X 2004 p.1/16

The matching problem

� Problem = project the structure of a regular expression on a
flat sequence.

� � � ��� � �� 	 �

�
 � � � � �� �� � �

� �� � ���� �� � � � � � � �� � � � �� � � � � � ��
 � �

� The result retains the structure of the regexp and the content
of the sequence.

� Result driven by the syntax of regexps

� � automata.

� Issues: efficiency, disambiguation.

PLAN-X 2004 p.2/16

Main motivation

� Type-directed native representation of values in XDuce-like
languages: E.g.:
[int] � int
[int int*] � struct

�

int fst; int[] snd;

�

� Advantages over uniform representation:

� More compact representation, less boxing

� Fast random access

� Easier to interface/integrate with other language

� Requires coercion between subtypes.

� Flatten sequences.

� Project the structure of the new regexp = matching.

PLAN-X 2004 p.3/16

Other applications

� Regexp packages with structured matching semantics.

� Lexer-parser generators.

� Sequence/tree transducers (e.g.: Hosoya’s filters).

PLAN-X 2004 p.4/16

Proof of concept

� A regexp iterator extension for C#
object[] a = new object[]

�

1,2,3,4,"abc",4,5,"xyz",6,7,false

�

;

applyregexp(a) (

(

(int , int)*,

string

)

|

(

(int)*,

bool

)

)*;

PLAN-X 2004 p.5/16

Proof of concept

� A regexp iterator extension for C#
object[] a = new object[]

�

1,2,3,4,"abc",4,5,"xyz",6,7,false

�

;

applyregexp(a) (

(

�

int sum = 0;

�

,

(int x, int y,

�

sum += x*y;

�

)*,

string s,

�

System.Console.WriteLine(s + ":" + sum);

�

)

|

(

�

int sum = 0;

�

,

(int x,

�

sum += x;
�

)*,

bool b,

�

System.Console.WriteLine(b + ":" + sum);

�

)

)*;

�

abc:14

xyz:20

False:13
PLAN-X 2004 p.6/16

Key issue: avoiding backtracking

� Consider the regexp:

� � � � � �� ��
�

�
�

� � 	

� To avoid backtracking, and still proceed by induction on the
regexp, we need to decide first which branch to take (left or
right?)

� Unbounded look-ahead!

PLAN-X 2004 p.7/16

An example

� Abstract syntax tree of the regexp.

Build an automaton.

Scan the input backwards (“subset construction”).

� � ��� ��
�

� 	 � ��� ��
�

� 	

 � �� �
�

�

�

�

� �

�

�

� �

�

PLAN-X 2004 p.8/16

An example

� Abstract syntax tree of the regexp.

� Build an automaton.

Scan the input backwards (“subset construction”).

� � ��� ��
�

� 	 � ��� ��
�

� 	

 � �� �
�

�

��

�

� �

�

�

� �

�
� �

a a

a b

PLAN-X 2004 p.8/16

An example

� Abstract syntax tree of the regexp.

� Build an automaton.

� Scan the input backwards (“subset construction”).

� � ��� ��
�

� 	 � ��� ��
�

� 	

 � �� �
�

�

��

�

� �

�

�

� �

�
� �� �

a a

a b

PLAN-X 2004 p.8/16

An example

� Abstract syntax tree of the regexp.

� Build an automaton.

� Scan the input backwards (“subset construction”).

� � ��� ��
�

� 	 � ��� ��
�

� 	

 � �� �
�

�

���

�

� �

�

��

�� ��

�
� �

a a

a b

PLAN-X 2004 p.8/16

An example

� Abstract syntax tree of the regexp.

� Build an automaton.

� Scan the input backwards (“subset construction”).

� � ��� ��
�

� 	 � ��� ��
�

� 	

 � �� �
�

�

���

�

� �

�

��

�� �

��
� �

a a

a b

PLAN-X 2004 p.8/16

Second pass: the matcher

�

let rec loop = function

| � -> ()

| �� � �� -> (loop �� , loop � �)

| �� � �� -> if ... then (1,loop � �) else (2,loop � �)

| � � -> if ... then (loop �)::(loop � �) else []

| � -> (* Consume the token *)

� What are the ... ?

� Given by the first pass.

� Disambiguation:

� first-match for

�

� greedy semantics for �

PLAN-X 2004 p.9/16

Non-termination problem

� The algorithm always terminates except with a subregexp

� �

where

�

is “nullable”.

� Examples:

��� �
�

� � 	 � ��� � � � � 	 �.

� Same problem in the folklore syntax-directed recognizer:
let rec loop � k w = match � with

| � -> k w

| �� � �� -> loop �� (loop � � k) w

| �� � �� -> (loop �� k w) || (loop � � k w)

| � � -> (loop � (loop � � k) w) || (k w)

| � -> (w <> []) && (hd w = �) && (k (tl w))

let accept � = loop � ((=) [])

� : regexp
k : continuation
w : input sequence

loop � k w = true

��

w = w1 @ w2 s.t. (� matches w1) && (k w2 = true)

PLAN-X 2004 p.10/16

Non-termination problem

� Simple solution: rewrite regexps to avoid the problematic
situation.

� E.g.:

��� �
�

� � 	 � � � �� ��
�

� � 	 � � � 	 �

� The structure of the regexp is lost: not suitable for the
matching problem.

� Interaction with the disambiguation policy ?

� Prevent iterations in stars from accepting empty sequences.

� In the functional recognizer, replace
(loop � (loop � � k) w) || (k w)

with:
(loop � (fun w’ -> (w <> w’) && (loop � � k w’) w)) || (k w)

� How to adapt our algorithm ?

PLAN-X 2004 p.11/16

An example

� � � ��� � �
� � � �

Loop of -transitions . . . now broken.

Still a finite state automaton (states).

�
�

� �

� �

PLAN-X 2004 p.12/16

An example

� � � ��� � �
� � � �

� Loop of �-transitions

. . . now broken.

Still a finite state automaton (states).

�
�

� �

� �

� � �

a b

PLAN-X 2004 p.12/16

An example

� � � ��� � �
� � � �

� Loop of �-transitions . . . now broken.

� Still a finite state automaton (states

��� �
� �

).

�
�

� �

� �

� � �

� � �

a

� � �

b

� � �

� �
� �

PLAN-X 2004 p.12/16

Second pass: the matcher

�

let rec loop = function

| � -> ()

| �� � �� -> (loop �� , loop � �)

| �� � �� -> if ... then (1,loop � �) else (2,loop � �)

| � � -> if ... then (f := 0; (loop �)::(loop � �)) else []

| � -> f := 1; (* Consume the token *)

� The ... are given by the first pass.

PLAN-X 2004 p.13/16

Summary

� Keep the connection between regexps and automata.

� Direct construction of the automaton

� Accept problematic regexps, reject problematic matchings.

� Result: linear time (two-passes) matching algorithm, which
can be efficiently implemented (bit sets).

� Abstract specification of the disambiguation policy as an
optimization problem (not presented).

PLAN-X 2004 p.14/16

Future work

� Try and evaluate an alternative implementation technique for
Xtatic (use native CLR representations and “value types”).

� Optimizations: the first pass is not always necessary. Use
(bounded) look-ahead as long as possible.

� Longest match semantics ?

PLAN-X 2004 p.15/16

Thank you!

PLAN-X 2004 p.16/16

	The matching problem
	Main motivation
	Other applications
	Proof of concept
	Proof of concept
	Key issue: avoiding backtracking
	An example
	Second pass: the matcher
	Non-termination problem
	Non-termination problem
	An example
	Second pass: the matcher
	Summary
	Future work
	Thank you!

