Greedy regular expression matching

Alain Frisch Luca Cardelli

INRIA MSRC

2004-05-15
ICALP

Alain Frisch, Luca Cardelli Greedy regular expression matching

The matching problem

The problem

Project the structure of a regular expression on a flat sequence.
R = (ax |b)x

@ w = ajaxb1braz

=v=[1:[a1;a]; 2:b1; 2: by 1:][a3]]

©

©

The result retains the structure of the regexp and the content
of the sequence.

Result driven by the syntax of regexps # automata.

Issues: efficiency, disambiguation.

Alain Frisch, Luca Cardelli Greedy regular expression matching

o Type-directed native representation of values in XDuce-like
languages: E.g.:
[int] ~ int
[int int*] ~ struct {int fst; int[] snd;}

@ Advantages over uniform representation:

@ More compact representation, less boxing
o Fast random access

o Easier to interface/integrate with other language
@ Requires coercion between subtypes.
o Flatten sequences.

o Project the structure of the new regexp = matching

Alain Frisch, Luca Cardelli

Greedy regular expression matching

Other applications

@ Regexp packages with structured matching semantics.
@ Lexer-parser generators.

@ Operation/representation defined by induction on the
structure of regexps (e.g.: Hosoya's filters).

Alain Frisch, Luca Cardelli Greedy regular expression matching

Proof of concept

@ A regexp iterator extension for C#

object[] a = new object[] {1,2,3,4,"abc",4,5,"xyz",6,7,false};
applyregexp(a) (
(

(int , int EN
string

(int)*,
bool

)*;

Alain Frisch, Luca Cardelli Greedy regular expression matching

Proof of concept

@ A regexp iterator extension for C#

object[] a = new object[] {1,2,3,4,"abc",4,5,"xyz",6,7,false};
applyregexp(a) (
({ int sum = 0; },
(int x, int y, { sum += x*y; })%,
string s,
{ System.Console.WriteLine(s + ":" + sum); }
)
|
({ int sum = 0; },
(int x, { sum += x; })*,
bool b,
{ System.Console.WriteLine(b + ":" + sum); }
)
)*;

abc:14
xyz:20
False:13

Alain Frisch, Luca Cardelli Greedy regular expression matching

Key issue: avoiding backtracking

o Consider the regexp:
R = ax |(ax, b, ax)

@ To avoid backtracking, and still proceed by induction on the
regexp, we need to decide first which branch to take (left or
right?)

@ Unbounded look-ahead!

Alain Frisch, Luca Cardelli Greedy regular expression matching

An example

@ Abstract syntax tree of the regexp.

R = (a%, a)|(ax, b)
w= ab

Alain Frisch, Luca Cardelli Greedy regular expression matching

An example

@ Abstract syntax tree of the regexp.

@ Build an automaton on top of it.

R = (a%, a)|(ax, b)
w= ab

Alain Frisch, Luca Cardelli Greedy regular expression matching

An example

@ Abstract syntax tree of the regexp.
@ Build an automaton on top of it.

@ Scan the input backwards (“subset construction”).

R = (ax, a)|(ax, b)
w= a be

Alain Frisch, Luca Cardelli Greedy regular expression matching

An example

@ Abstract syntax tree of the regexp.
@ Build an automaton on top of it.

@ Scan the input backwards (“subset construction”).

R = (ax, a)|(ax, b)
w = aeb

Alain Frisch, Luca Cardelli Greedy regular expression matching

An example

@ Abstract syntax tree of the regexp.
@ Build an automaton on top of it.

@ Scan the input backwards (“subset construction”).

R = (ax, a)|(ax, b)
w=eab

Alain Frisch, Luca Cardelli Greedy regular expression matching

Second pass: the matcher

let rec loop = function
le—>0
r , rp => (loop ry, loop r)

|
| rn | n=>if ... then (1,loop r;) else (2,loop r)
| r% => if ... then (loop r)::(loop rx) else []

|

c -> (x Consume the token *)

@ What are the ... ?
@ Given by the first pass.

@ Disambiguation:

o first-match for |
o greedy semantics for *

Alain Frisch, Luca Cardelli Greedy regular expression matching

Non-termination problem

The algorithm always terminates except with a subregexp R* where
R is “nullable”.)

Examples: (ax, bx)x (a* |bx)x

Same problem in the folklore syntax-directed recognizer:

let rec loop r k w = match r with

l e >kw

| rn, rp =>loop r; (loop rp k) w

| ri | m=> (Qoop r; k w) || (loop rp k w)
| rx => (loop r (loop r* k) w) || (k w)

|

c > (w<>[]) & (hd w=1c) & (k (t1 w))

let accept r = loop r ((=) [1)

r: regexp
k : continuation
w : input sequence

loop r k w = true <=> w = wl @ w2s.t. (r matches w1) && (k w2 = true)

Alain Frisch, Luca Cardelli Greedy regular expression matching

Non-termination problem: solutions

Rewrite regexps to avoid the problematic situation
o E.g.: (ax, bx)*x ~ ((ax, b+)|a+)*

@ The structure of the regexp is lost: not suitable for the
matching problem.

@ Interaction with the disambiguation policy ?

Prevent iterations in stars from accepting empty sequences

o In the functional recognizer, replace

(loop r (loop rx k) w) || (k w)
with:
(loop r (fun w’ -> (w <> w’) && (loop rx k w’) w)) || (k w)

o How to adapt our algorithm 7

Alain Frisch, Luca Cardelli Greedy regular expression matching

An example

Q R= (ax, bx)*

Frisch, Luca Cardelli Greedy regular expression matchil

An example

Q@ R= (ax, bx)*

@ Loop of e-transitions

Alain Frisch, Luca Cardelli Greedy regular expression matching

An example

Q@ R= (ax, bx)*
@ Loop of e-transitions . .. now broken.

@ Still a finite state automaton (states (g, f)).

Alain Frisch, Luca Cardelli Greedy regular expression matching

Second pass: the matcher

let rec loop = function
e >0

r , rp => (loop ry, loop rp)

rn | rn->if ... then (1,lo0op r) else (2,1loop ry)
rx => if ... then (f := 0; (loop r)::(loop rx)) else []
c => f :=1; (* Consume the token *)

The ... are given by the first pass.

Alain Frisch, Luca Cardelli Greedy regular expression matching

Conclusion

@ Keep a tight connection between regexps and automata.
o Direct construction of the automaton

@ Accept problematic regexps, reject problematic matchings.

@ Result: linear time (two-passes) matching algorithm, which
can be efficiently implemented.

@ Abstract specification of the disambiguation policy as an
optimization problem (not presented).

@ Characterization and study of problematic cases (not
presented).

Alain Frisch, Luca Cardelli Greedy regular expression matching

o Evaluate the alternative implementation technique for XML
languages.

@ Optimizations: the first pass is not always necessary. Use
(bounded) look-ahead as long as possible, or a lazy first pass.

@ Non-local disambiguation policy, e.g.: longest match
semantics.

@ Non-regular languages.

Alain Frisch, Luca Cardelli Greedy regular expression matching

Questions ?

Frisch, Luca Cardelli Greedy regular expression matchil

