
Greedy regular expression matching

Alain Frisch Luca Cardelli

INRIA MSRC

2004-05-15
ICALP

Alain Frisch, Luca Cardelli Greedy regular expression matching

The matching problem

The problem

Project the structure of a regular expression on a flat sequence.

R = (a ∗ |b)∗

w = a1a2b1b2a3

⇒ v = [1 : [a1; a2]; 2 : b1; 2 : b2; 1 : [a3]]

The result retains the structure of the regexp and the content
of the sequence.

Result driven by the syntax of regexps 6= automata.

Issues: efficiency, disambiguation.

Alain Frisch, Luca Cardelli Greedy regular expression matching

Main motivation

Type-directed native representation of values in XDuce-like
languages: E.g.:
[int] ; int

[int int*] ; struct {int fst; int[] snd;}

Advantages over uniform representation:

More compact representation, less boxing
Fast random access
Easier to interface/integrate with other language

Requires coercion between subtypes.

Flatten sequences.
Project the structure of the new regexp = matching.

Alain Frisch, Luca Cardelli Greedy regular expression matching

Other applications

Regexp packages with structured matching semantics.

Lexer-parser generators.

Operation/representation defined by induction on the
structure of regexps (e.g.: Hosoya’s filters).

Alain Frisch, Luca Cardelli Greedy regular expression matching

Proof of concept

A regexp iterator extension for C#
object[] a = new object[] {1,2,3,4,"abc",4,5,"xyz",6,7,false};
applyregexp(a) (

(

(int , int)*,

string

)

|

(

(int)*,

bool

)

)*;

Alain Frisch, Luca Cardelli Greedy regular expression matching

Proof of concept

A regexp iterator extension for C#
object[] a = new object[] {1,2,3,4,"abc",4,5,"xyz",6,7,false};
applyregexp(a) (

({ int sum = 0; },
(int x, int y, { sum += x*y; })*,

string s,

{ System.Console.WriteLine(s + ":" + sum); }
)

|

({ int sum = 0; },
(int x, { sum += x; })*,

bool b,

{ System.Console.WriteLine(b + ":" + sum); }
)

)*;

;

abc:14

xyz:20

False:13

Alain Frisch, Luca Cardelli Greedy regular expression matching

Key issue: avoiding backtracking

Consider the regexp:

R = a ∗ |(a∗, b, a∗)

To avoid backtracking, and still proceed by induction on the
regexp, we need to decide first which branch to take (left or
right?)

Unbounded look-ahead!

Alain Frisch, Luca Cardelli Greedy regular expression matching

An example

Abstract syntax tree of the regexp.

R = (a∗, a)|(a∗, b)
w = a b

|

,

∗ a

a

,

∗ b

a

Alain Frisch, Luca Cardelli Greedy regular expression matching

An example

Abstract syntax tree of the regexp.

Build an automaton on top of it.

R = (a∗, a)|(a∗, b)
w = a b

||

,

∗ a

a

,

∗ b

a

qf

a a

a b

Alain Frisch, Luca Cardelli Greedy regular expression matching

An example

Abstract syntax tree of the regexp.

Build an automaton on top of it.

Scan the input backwards (“subset construction”).

R = (a∗, a)|(a∗, b)
w = a b•

||

,

∗ a

a

,

∗ b

a

qfqf

a a

a b

Alain Frisch, Luca Cardelli Greedy regular expression matching

An example

Abstract syntax tree of the regexp.

Build an automaton on top of it.

Scan the input backwards (“subset construction”).

R = (a∗, a)|(a∗, b)
w = a•b

|||

,

∗ a

a

,,

∗∗ bb

a

qf

a a

a b

Alain Frisch, Luca Cardelli Greedy regular expression matching

An example

Abstract syntax tree of the regexp.

Build an automaton on top of it.

Scan the input backwards (“subset construction”).

R = (a∗, a)|(a∗, b)
w = •a b

|||

,

∗ a

a

,,

∗∗ b

aa

qf

a a

a b

Alain Frisch, Luca Cardelli Greedy regular expression matching

Second pass: the matcher

let rec loop = function

| ε -> ()

| r1 , r2 -> (loop r1, loop r2)

| r1 | r2 -> if ... then (1,loop r1) else (2,loop r2)

| r∗ -> if ... then (loop r)::(loop r∗) else []

| c -> (* Consume the token *)

What are the ... ?

Given by the first pass.

Disambiguation:

first-match for |
greedy semantics for ∗

Alain Frisch, Luca Cardelli Greedy regular expression matching

Non-termination problem

The algorithm always terminates except with a subregexp R∗ where
R is “nullable”.

Examples: (a∗, b∗)∗ (a ∗ |b∗)∗

Same problem in the folklore syntax-directed recognizer:

let rec loop r k w = match r with

| ε -> k w

| r1 , r2 -> loop r1 (loop r2 k) w

| r1 | r2 -> (loop r1 k w) || (loop r2 k w)

| r∗ -> (loop r (loop r∗ k) w) || (k w)

| c -> (w <> []) && (hd w = c) && (k (tl w))

let accept r = loop r ((=) [])

r : regexp
k : continuation
w : input sequence

loop r k w = true ⇐⇒ w = w1 @ w2 s.t. (r matches w1) && (k w2 = true)

Alain Frisch, Luca Cardelli Greedy regular expression matching

Non-termination problem: solutions

Rewrite regexps to avoid the problematic situation

E.g.: (a∗, b∗)∗ ; ((a∗, b+)|a+)∗

The structure of the regexp is lost: not suitable for the
matching problem.

Interaction with the disambiguation policy ?

Prevent iterations in stars from accepting empty sequences

In the functional recognizer, replace
(loop r (loop r∗ k) w) || (k w)

with:
(loop r (fun w’ -> (w <> w’) && (loop r∗ k w’) w)) || (k w)

How to adapt our algorithm ?

Alain Frisch, Luca Cardelli Greedy regular expression matching

An example

R = (a∗, b∗)∗

∗

,

∗ ∗

a b

Alain Frisch, Luca Cardelli Greedy regular expression matching

An example

R = (a∗, b∗)∗

Loop of ε-transitions

∗

,

∗ ∗

a b

∗ qf

a b

Alain Frisch, Luca Cardelli Greedy regular expression matching

An example

R = (a∗, b∗)∗

Loop of ε-transitions . . . now broken.

Still a finite state automaton (states (q, f)).

∗

,

∗ ∗

a b

∗ qf

f ← 0

a
f ← 1

b
f ← 1

f
?
= 1

Alain Frisch, Luca Cardelli Greedy regular expression matching

Second pass: the matcher

let rec loop = function

| ε -> ()

| r1 , r2 -> (loop r1, loop r2)

| r1 | r2 -> if ... then (1,loop r1) else (2,loop r2)

| r∗ -> if ... then (f := 0; (loop r)::(loop r∗)) else []

| c -> f := 1; (* Consume the token *)

The ... are given by the first pass.

Alain Frisch, Luca Cardelli Greedy regular expression matching

Conclusion

Keep a tight connection between regexps and automata.

Direct construction of the automaton

Accept problematic regexps, reject problematic matchings.

Result: linear time (two-passes) matching algorithm, which
can be efficiently implemented.

Abstract specification of the disambiguation policy as an
optimization problem (not presented).

Characterization and study of problematic cases (not
presented).

Alain Frisch, Luca Cardelli Greedy regular expression matching

Future work

Evaluate the alternative implementation technique for XML
languages.

Optimizations: the first pass is not always necessary. Use
(bounded) look-ahead as long as possible, or a lazy first pass.

Non-local disambiguation policy, e.g.: longest match
semantics.

Non-regular languages.

Alain Frisch, Luca Cardelli Greedy regular expression matching

Questions ?

Alain Frisch, Luca Cardelli Greedy regular expression matching

