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The matching problem

The problem

Project the structure of a regular expression on a flat sequence.

R = (a ∗ |b)∗

w = a1a2b1b2a3

⇒ v = [1 : [a1; a2]; 2 : b1; 2 : b2; 1 : [a3]]

The result retains the structure of the regexp and the content
of the sequence.

Result driven by the syntax of regexps 6= automata.

Issues: efficiency, disambiguation.
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Main motivation

Type-directed native representation of values in XDuce-like
languages: E.g.:
[ int ] ; int

[ int int* ] ; struct {int fst; int[] snd;}

Advantages over uniform representation:

More compact representation, less boxing
Fast random access
Easier to interface/integrate with other language

Requires coercion between subtypes.

Flatten sequences.
Project the structure of the new regexp = matching.
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Other applications

Regexp packages with structured matching semantics.

Lexer-parser generators.

Operation/representation defined by induction on the
structure of regexps (e.g.: Hosoya’s filters).
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Proof of concept

A regexp iterator extension for C#
object[] a = new object[] {1,2,3,4,"abc",4,5,"xyz",6,7,false};
applyregexp(a) (

(

( int , int )*,

string

)

|

(

( int )*,

bool

)

)*;
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Proof of concept

A regexp iterator extension for C#
object[] a = new object[] {1,2,3,4,"abc",4,5,"xyz",6,7,false};
applyregexp(a) (

( { int sum = 0; },
( int x, int y, { sum += x*y; } )*,

string s,

{ System.Console.WriteLine(s + ":" + sum); }
)

|

( { int sum = 0; },
( int x, { sum += x; } )*,

bool b,

{ System.Console.WriteLine(b + ":" + sum); }
)

)*;

;

abc:14

xyz:20

False:13

Alain Frisch, Luca Cardelli Greedy regular expression matching



Key issue: avoiding backtracking

Consider the regexp:

R = a ∗ |(a∗, b, a∗)

To avoid backtracking, and still proceed by induction on the
regexp, we need to decide first which branch to take (left or
right?)

Unbounded look-ahead!
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An example

Abstract syntax tree of the regexp.

R = (a∗, a)|(a∗, b)
w = a b

|

,

∗ a

a

,

∗ b

a
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An example

Abstract syntax tree of the regexp.

Build an automaton on top of it.

R = (a∗, a)|(a∗, b)
w = a b

||

,

∗ a

a

,

∗ b

a

qf

a a

a b
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An example

Abstract syntax tree of the regexp.

Build an automaton on top of it.

Scan the input backwards (“subset construction”).

R = (a∗, a)|(a∗, b)
w = a b•

||

,

∗ a

a

,

∗ b

a

qfqf

a a

a b
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An example

Abstract syntax tree of the regexp.

Build an automaton on top of it.

Scan the input backwards (“subset construction”).

R = (a∗, a)|(a∗, b)
w = a•b

|||

,

∗ a

a

,,

∗∗ bb

a

qf

a a

a b
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An example

Abstract syntax tree of the regexp.

Build an automaton on top of it.

Scan the input backwards (“subset construction”).

R = (a∗, a)|(a∗, b)
w = •a b

|||

,

∗ a

a

,,

∗∗ b

aa

qf

a a

a b
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Second pass: the matcher

let rec loop = function

| ε -> ()

| r1 , r2 -> (loop r1, loop r2)

| r1 | r2 -> if ... then (1,loop r1) else (2,loop r2)

| r∗ -> if ... then (loop r)::(loop r∗) else []

| c -> (* Consume the token *)

What are the ... ?

Given by the first pass.

Disambiguation:

first-match for |
greedy semantics for ∗
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Non-termination problem

The algorithm always terminates except with a subregexp R∗ where
R is “nullable”.

Examples: (a∗, b∗)∗ (a ∗ |b∗)∗

Same problem in the folklore syntax-directed recognizer:

let rec loop r k w = match r with

| ε -> k w

| r1 , r2 -> loop r1 (loop r2 k) w

| r1 | r2 -> (loop r1 k w) || (loop r2 k w)

| r∗ -> (loop r (loop r∗ k) w) || (k w)

| c -> (w <> []) && (hd w = c) && (k (tl w))

let accept r = loop r ( (=) [] )

r : regexp
k : continuation
w : input sequence

loop r k w = true ⇐⇒ w = w1 @ w2 s.t. (r matches w1) && (k w2 = true)
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Non-termination problem: solutions

Rewrite regexps to avoid the problematic situation

E.g.: (a∗, b∗)∗ ; ((a∗, b+)|a+)∗

The structure of the regexp is lost: not suitable for the
matching problem.

Interaction with the disambiguation policy ?

Prevent iterations in stars from accepting empty sequences

In the functional recognizer, replace
(loop r (loop r∗ k) w) || (k w)

with:
(loop r (fun w’ -> (w <> w’) && (loop r∗ k w’) w)) || (k w)

How to adapt our algorithm ?
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An example

R = (a∗, b∗)∗

∗

,

∗ ∗

a b
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An example

R = (a∗, b∗)∗

Loop of ε-transitions

∗

,

∗ ∗

a b

∗ qf

a b
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An example

R = (a∗, b∗)∗

Loop of ε-transitions . . . now broken.

Still a finite state automaton (states (q, f )).

∗

,

∗ ∗

a b

∗ qf

f ← 0

a
f ← 1

b
f ← 1

f
?
= 1
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Second pass: the matcher

let rec loop = function

| ε -> ()

| r1 , r2 -> (loop r1, loop r2)

| r1 | r2 -> if ... then (1,loop r1) else (2,loop r2)

| r∗ -> if ... then ( f := 0; (loop r)::(loop r∗)) else []

| c -> f := 1; (* Consume the token *)

The ... are given by the first pass.
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Conclusion

Keep a tight connection between regexps and automata.

Direct construction of the automaton

Accept problematic regexps, reject problematic matchings.

Result: linear time (two-passes) matching algorithm, which
can be efficiently implemented.

Abstract specification of the disambiguation policy as an
optimization problem (not presented).

Characterization and study of problematic cases (not
presented).
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Future work

Evaluate the alternative implementation technique for XML
languages.

Optimizations: the first pass is not always necessary. Use
(bounded) look-ahead as long as possible, or a lazy first pass.

Non-local disambiguation policy, e.g.: longest match
semantics.

Non-regular languages.
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Questions ?
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